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Preface

The6809 microprocessor thatlies at the heart of the Dragon is one of the most
logical and easy-to-program of today’s microprocessors. This makes it
particularly suitable for learning assembly language with the minimum of fuss
and confusion.

The aim of this book is to introduce 6809 assembly language programming
to anyone with a prior knowledge of Dragon BASIC. Starting off from first
principles of machine code, the need to use assembly language is quickly
established. However, rather than rely on a particular commercial assembler,
the book presentsits own BASIC assembler which is built up stage-by-stage.
This approach has the advantage of making absolutely clear the details of
what an assembler does by giving a practical demonstration of why each new
facility is required and how each is added. Although the BAS|C assembler can
cope with any of the programs and routines in this book, its limitations (in
terms of speed) are apparent when handling the longest of them. So, while
the BASIC assembler provides a useful tool for coming to terms with
assembler, and provides a good model if you wish to write your own, once
you've mastered the assembly language needed to do so, itis notintended to
be used extensively as it stands. So, if you do foresee making a good deal of
use of an assembler, then at some stage you will probably want to consider
buying one of the commercially available ones. The details of two such
packages are given in Appendix Il. If course, if you already have such a piece
of software available, then it can be used in place of the BASIC assembler as
you work through this book. It is still worth inspecting the BASIC listing,
however, as it will reveal HOW an assembler works and some of the problems
it has to overcome.

There are no short cuts to learning assembler and, unlike BASIC, where
you can start to write simple and useful programs when you’ve mastered only



afew commands, thereis a lot of ground to cover before you can do anything
that seems at all impressive. It IS worth the struggle however as, at the end of
the day, assembly language programming does bring all the promised
benefits of increased power and speed. Above all, assembly language
programming is a challenge which it is great fun to pursue.
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Chapter One

Why Assembler?

The only way to get the maximum power from any computer is to program
it in assembler. This is the only reason for using assembler as opposed to
friendlier computer languages such as BASIC. Even powerful, up-to-date
microcomputers such as the Dragon don’t really run languages such as
BASIC fast enough for anything other than small programs and
applications where the user is prepared to wait. Until microcomputers
become much faster there will always be the need to take advantage of the
improved efficiency offered by assembler.

Of course, there are a number of secondary reasons why particular
individuals might decide to learn assembler. For example, assembler brings
you closer to the inner workings of your machine than any other language.
Another reason that is not often acknowledged is that, if you are using
computers for fun, then you might like to try something a little more
challenging than BASIC! However, it is important to realise that, while
there are endless personal reasons for choosing a particular language, the
only practical advantage that assembler has is speed.

BASIC is easy

The transition from a high level language to assembler is bound to come
as something of a shock. For a start, a high level language lets the
programmer takes a good deal for granted and is therefore very much
more compact than assembler. One of the first things you now have to
realise is that one line of BASIC is often equivalent to several lines of
assembler. There is no denying that assembler is more difficult to learn and
use than BASIC. If this were not the case, then all personal computers
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would come equipped with assembler instead of the standard BASIC. The
fact that assembler IS more difficult should not put you off the task of
learning it even if you are a relative newcomer to computing. BUT, if you
don’t already know BASIC then do not attempt to learn assembler until
you do - assembler isn't a good first language! For the rest of this book it
will be assumed that you can write BASIC programs on the Dragon. If you
have this knowledge of programming, then learning assembler is well
within your reach. To make full use of assembler it is an advantage to
know something of binary numbers and one or two other topics but it is
better to leave these until they become necessary.

As assembler is a language that is closely tied to the design of the
computer, so a knowledge of the internal workings of the Dragon is useful
but not necessary. The need for assembly language often arisec when you
are trying to make creative use of some part of the machine’s hardware
where speed is essential. For example, the Dragon’s sound generator can
be controlled directly from BASIC but not fast enough to make any sounds
other than a low pitched buzz - from assembler the range of sounds that
you can make is unlimited. Many of the examples later in this book use
hardware features of the Dragon and if you would like a fuller
understanding of the overall hardware design, then you might like to
consult the companion volume to this book, “The Anatomy of the
Dragon”, which is also published by Sigma. Indeed it may be that the
difficulty inherent in using BASIC to control the Dragon’s hardware directly,
encountered so often in “The Anatomy of the Dragon”, is what that has
pulled you toward assembler.

Which assembler?

Although the term ‘assembler’ has so far been used as if it referred to a
single computer language, this is unfortunately far from the truth. In fact,
each different microprocessor or CPU (Central Processing Unit) used at
the heart of a complete machine has its own particular assembly language.
Notice that two different machines may use the same assembly language if
they also use the same microprocessor. For example, both the BBC Micro
and the APPLE use the 6502 microprocessor so they both recognise 6502
assembly instructions. But, in practice, assembly language programs tend
to make use of particular features of the machine and so the chance of an
APPLE assembly language program working on the BBC Micro is very
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small. For this reason it is better to think of assembly language programs
being completely machine specific. In other words, you are writing Dragon
assembly language for the Dragon and no other machine (with the obvious
exception of the very similar Tandy Color computer).

The microprocessor used inside the Dragon is a very advanced device
called the 6809. Although the 6809 is advanced you shouldn’t fall into the
trap of thinking that ‘advanced’ implies difficult. In fact the 6809 is a very
suitable microprocessor from the point of view of learning a first assembly
language because it is a very logical and well designed device. An
assembly language, in common with almost any language, becomes
difficult to learn if it is full of ‘exceptions’ and special rules. As far as is
possible, 6809 assembly language is based on a number of simple general
rules and ideas and, once you have mastered these, the whole language
seems very easy.

Machine code and assembler

Life is just a little more complicated than the last section would suggest.
A microprocessor doesn’t work in terms of assembly language as written
by programmers but in ‘machine code’. There is a lot of confusion about
the relationship between machine code and assembler that is worth
clearing up at this early stage.

As will be clear by the end of this book, computers work entirely in
terms of numbers. The wordy commands of BASIC are not directly
recognised by a machine. Instead there is a great deal of software in the
system devoted to converting them to a sequence of numeric commands.
These numeric commands form the only language the the machine can
obey directly and are usually referred to as ‘machine code’. And so, to
program a computer directly, we have to make lists of numbers, with each
number corresponding to a single fundamental operation. This is fine for
the computer but what about the programmer? Imagine if all of the
command words in BASIC (e.g. GOTO, IF, FOR etc) had to be written in
terms of code numbers. Apart from making programs unreadable, it would
take quite some time to remember which code number corresponded to
which command. The point is, that while computers can only deal with
code numbers, humans find it much easier to work with meaningful
words. This is where assembler comes into the picture.
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The fact that a computer needs all of its instructions in the form of
numbers is something that we can do nothing about. However, there is
nothing stopping us from writing our programs in terms of easy to
remember ‘command names’ and then translating them into the numeric
codes used by the computer. For example, the 6809 machine code
instruction that plays the same role as GOTO in BASIC (i.e. it transfers
control from one position in a program to another) is 14 but it is much
easier to read and write the three letter command name JMP, which is
short for JuMP. Such easy to remember command names are usually
called ‘mnemonics’ because they help you to remember the commands.
{Mnemonic derives from the Greek word “mnemon”, meaning “mindful”.)
To this end long names are avoided in preference for three-, or at most
four-letter abbreviations. The collection of mnemonic commands is called
the machine’s 'assembly language’ and the act of converting it to the
numeric codes is called ‘assembling the program’.

You should now be able to see that there is such a close connection
between machine code and assembly language that there is a tendency to
treat them as the same thing. But there are important distinctions:

1) Machine code is composed of nothing butnumbers and is the
language thatthe computer obeys directly.

2) Assemblylanguageis an easy-to-use form of machine code with
the numeric codes replaced by short memorable command words
called ‘mnemonics’.

3) Assembly language must be converted to machine code beforea
computer canobeyit. This conversion is called'assembling the
program’ and canbe achieved by a special program calledan
‘assembler’.

An Assembler

Producing an assembly language program has a number of stages, some
of which are the same as the stages in producing a BASIC program.
Obviously the first stage is to write the program, it then has to be
converted to machine code, loaded into the machine and run. As a result
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of the run, errors or other misbehaviour have to be noted, their cause
found and then the whole cycle repeated after corrections have been
made.

You can see that an important component of this production cycle is the
conversion of assembly language to machine code. For a small program
this can be achieved by the programmer looking up the numeric
equivalents of each instruction in an appropriate table - such as the one
given in Appendix |. This method of conversion is known as ‘hand
assembly’ and if you are only going to write the occasional small assembly
language program it is good enough. However it soon becomes tedious if
you are writing any number of assembly language programs and error
prone if the program is at all long.

The solution is to make use of the power of the computer to automate
the process of hand assembly. Instead of you looking up the numeric code
in a table why not write a program that does just that. Such a program is
called an ‘assembler’. So an assembler takes assembly language as its
input and outputs machine code thus -

assembly language--> assembler --> machine code

This sounds like a good idea but where do you get an assembler from?
There are a number of standard assemblers on the market and there is no
doubt that if you are going to use assembly language often then itis worth
investing in one of them. However, so that you can try out the ideas
explained in this book without having to resort to tiresome hand assembly
or an expensive assembler a simple assembler will be given using nothing
but BASIC. Writing an assembler in BASIC may sound like a difficult
program but, as you will see as things progress, it is fairly straightforward.
To make it even easier to understand, rather than quoting a listing of the
complete assembler, it will be built up chapter by chapter. In each case
only the commands and facilities discussed in the chapter will be added
and so, you should not only be able to understand the assembly language
of the Dragon, you should also be able to build up a picture of how an
assembler works. If you are not interested in how an assembler works,
then you can skip the explanations and just use the program (a complete
listing of which is given in Appendix Il.) However, there is nothing like
understanding the principles behind software for demonstrating how
simple it really is.
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Trial and error

In the next chapter the practical side of assembly language is introduced
and it is important that you do try out the examples. So far, most of the
ideas that have been presented come into the category of theory but it is
surprising how a little theory can make practice seem easier. The reverse
is also true and so, after you have reached Chapter Three or, Four try
returning to this chapter and look over its contents. You might be pleased
to discover that things fit together to form a complete picture! This
principle of reading on and then going back is a technique for reading
computer books that you should always apply. If you find that you are not
understanding something don’t immediately stop and go back to earlier
material, carry on reading to the end of the chapter or section and THEN
go back. It is often the case that later information clarifies earlier
misunderstandings but going back too soon simply reinforces them!



Chapter Two

Registers and Operations

The microprocessor, or CPU, is the powerhouse of any computer. It is the
place where all of the calculations and operations on data are carried out.
From the point of view of the assembly language programmer, the CPU is
also the most important part of the computer because it determines the
operations that are possible and so dictates the form of the assembly
language. However, even the all-important CPU has to work along with
the other parts of the computer. In particular, it works in a close
partnership with the computer’'s memory. In this chapter the idea of the
CPU taking both its data and its instructions from memory is explained,
some simple assembly language instructions are introduced and the first
part of the simple assembler are given.

Memory, addresses and data

You probably already know that the best way to think of a computer’s
memory is as a large collection of boxes or pigeon holes each capable of
storing a single number. These boxes or ‘'memory locations’ are used by
the CPU to store information. Obviously to be of any use it is important
that each ‘box’ in the memory has a unique name so that the CPU can
refer to the box that it wants to store something in or retrieve something
from. This name is usually referred to as an ‘address’ and, as computers
work only with numbers, it makes good sense to restrict ourselves to
numeric addresses. Thus, each memory location has associated with it a
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number, its address, and a number stored within it, its data. The Dragon’s
RAM occupies addresses from 0 to 32767 and each memory location can
store a number in the range 0 to 255. The reason for the limits being 32767
and 255 are connected with the way that a computer actually stores
numbers in binary and this will be discussed a little later in this chapter.

Now that we understand the way that memory works in terms of
addresses and data, we need to ask what role the CPU plays. First it is
important to realise that the memory can only contain data, either
representing a computer program or the information used by the program.
Any changes or operations on data are done within the CPU. Indeed, the
memory cannot take the necessary steps to store and retrieve data without
the aid of the CPU and in this sense it is best thought of as the CPU’s
slave. The relationship between the CPU and memory can be seen in fig
2.1 where a portion of memory is shown as a column of boxes and the
CPU supplies the address of the box that it uses to either store or retrieve
data. Fig 2.1 shows the data from memory being produced from the CPU
and stored in memory or vice versa. This poses the question, what
happens to the data once it is inside the CPU ? In memory data is stored in
a particular location. Where is it stored while it is inside the CPU? The
answer to both of these questions lies in the study of the internal structure
or, to use the accepted jargon, the "architecture’ of the CPU.

Registers - the CPU’s own memory

The storage of data implies that some kind of memory is in use and so it
is with the CPU. Within the CPU are a small number of very special
memory locations called ‘registers’. To be absolutely clear, registers have
nothing to do with the computer’s main memory and addressing methods.

They are more like internal ‘notepads’ that the CPU uses to hold data
while it is working with it. As there are only a small number of registers
inside the CPU it is usual to give each one a name rather than a numerical
address. There are nine registers inside the 6809 microprocessor that
makes up the Dragon’s CPU. Rather than examining them all in one go, it
is less confusing to introduce them as the need arises. Perhaps the two
most useful registers are the A and B accumulators. The reason why they
are called accumulators is a little difficult to explain at this stage but,
roughly speaking, an accumulator is a register where data cannot only be
stored but can also be changed (i.e. the result is ‘accumulated’). The ways
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in which data can be changed are fairly limited and it is this limitation that
generally makes assembly language programming more difficult than say
BASIC.

The 6809's A and B registers are just like ordinary memory locations in
that they can each hold a single number in the range 0 to 255. This means
that the contents of a single memory location can be transferred to either
the A or the B register. The 6809 carries out the instructions LDA, short
for LoaD the A register, and LDB, which is short for LoaD the B register,
for just this purpose. So, when the 6809 comes to obeying the numeric
code in @ machine code program that is associated with LDA, it loads the
A register, but from where? Obviously an instruction to load a register
from memory must include information about which memory location is to
be used. The complete form of the LDA is in fact LDA ‘address’ where
‘address’ is a number that is used as the address of the memory location
whose contents are transferred (or loaded) into the A register. So, for
example, LDA 421 would read the contents of memory location 421 and
store them in the A register. It is important to notice that following the
transfer the contents of memory location 421 is unaltered. Indeed the only
thing that has changed is that the A register now has the SAME contents
as location 421.

To change the contents of location 421, or any other location for that
matter we have to use the STA (standing for STore the A register) or the
STB (standing for STore the B register) instructions.

STA ‘address’
STB 'address’

will store the contents of the A or B register in the memory location whose
address is given by ‘address’. For example STB 421 will store the contents
of the B register into the memory location whose address is 421. Once
again notice that following this instruction the B register is unaltered.

At this point it is worth clearing up some common misconceptions
about memory. Whenever the Dragon is switched on every RAM location
will contain some data - there is no such thing as ‘empty’ memory! The
memory locations are initialised to contain random values, some of which
are quickly changed to meaningful data by BASIC or whatever you are
using. The value in a memory location is changed only by storing a new

10
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value in it and, when that happens, the value that it formerly contained is
lost forever - in other words storing a new value in memory (or a register
for that matter) overwrites the old value. Moreover, retrieving (i.e. reading)
the contents of a memory location (or again a register) doesn’t alter its
contents in any way - its contents are simply copied.

A short program

Now that we have four assemblylanguage instructions LDA, LDB, STA
and STB we can write a very simple program -

LDA 100
LDB200
STA200
STB 100

This program first loads the A register from memory location 100 andthe B
register from memory location 200 and then stores A in 200 and B in 100 so
effectively swapping the contents of the two memory locations. Notice
that even for this very simple operation of swapping the contents of two
memory locations the data still had to be brought inside the CPU before
anything could be done to it! This is such a simple program that hand
assembling it is not too much trouble and is also quite instructive. The
code that corresponds to LDA is 146, for LDB it is 214, for STA itis 147
and for STB it is 215. (If you have tried to use the table in Appendix | to
look up the codes for LDA etc you will have noticed that the values it
contains are all in hexadecimal. Don’t let thisworry you now. By the end
of the next chapter you will be confident about using hex. You may also
have been puzzled by the fact that there is more than one choice of code
for each mnemonic. Again don’t worry about this for the moment it will
be fully explained in the next chapter!) So in machine code the program is

146100
214200
147200
215100

and perhaps now you can see why programmers prefer to use assembly
language mnemonics instead of machine code!

1"
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address data
59
58
57 100
56 215
55 200
54 147
53 200
52 214
51 100
50 146

Fig2.2 The “swap"” program stored in memory
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The list of eight numbers given above is indeed a machine code program
that the 6809 inside the Dragon will obey to swap the contents of memory
locations 100 and 200. The next question that has be be asked is how does
the 6809 ever get to 'see’ the list of numbers that constitutes the program
that we want it to obey? At the moment the list exists only on paper and
the 6809 has no access to it! Obviously the program must be stored in
memory as this is the only place that the CPU can obtain any sort of
information from.

The fact that machine code program is stored in memory should not
come as, any great surprise after all where else is a BASIC program
stored? However, there are some important differences between the way a
BASIC program and a machine code program are stored in memory. In
particular the lines of a BASIC program are ‘marked’ by line numbers so
that at any given moment the computer is obeying a particular line number
but the commands of a machine code program are only ‘marked’ by the
address of the memory location that they are stored in. Notice that a single
instruction can occupy more than one memory location and so correspond
to more than one address. For example the LDA 100 instruction takes two
memory locations and is stored in 50 and 51. In obeying the program the
6809 would first carry out the instruction stored starting at 50 (i.e. the LDA
100) it would then move on to carry out the instruction starting at 52 and
so on until the program was finished. (Notice that in this simple example
the problem of stopping the computer at the end of the program has been
totally ignored!)

You should be able to see that the address that an instruction is stored
at can function in exactly the same way that line numbers do in BASIC.
That is the 6809 can keep track of where it is in a program simply by
remembering the address of the instruction thatitis carrying out. Also, like
a BASIC program, a machine code program is obeyed in order of
increasing address, unless it is made to do otherwise by the machine code
equivalent of a GOTO, a GOSUB or a RETURN. As you might guess, the
address of the instruction that is being carried out is kept inside the CPU in
yet another register - the PC or Program Counter - bringing the total
number of registers that we know about to three. To make the 6809 obey
the swap program the PC register would first be loaded with 50 (how, will
be explained later) then the instruction starting at address 50 would be
carried out and the PC register adjusted to point to the next instruction
and so on until the program was complete.

13
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The only thing that you have to be careful of is that the area of memory
that is used to store the program isn’t being used for something else. For
example, it wouldn’t be a good idea to store the swap program starting at
memory location 100 (because this is one of the memory locations that is
swapped and so we have to assume it contains data.) You should now be
able to see that the Dragon’s memory stores only numbers but these
numbers can serve two different functions. They can be data that a
program operates on or they can be instructions within machine code
programs. Sometimes the CPU takes data from memory and sometimes it
takes its next instruction.

Summary

So far the only machine code instructions that have been explained are
LDA, LDB, STA and STB. However, a lot of new ideas have been
introduced in this chapter, so it is worth gathering them together and
attempting to summarise the main ideas:

1) Each memory location isidentified by an address and can storea
single number in therange0 t0 255.

2) Data is stored and manipulated inside the CPU using registers.

3) A machine code programisa list of numbers stored in memory;
memoryis, therefore, used tostore both dataand programs.

4)Theaddressthataninstruction isstored atisusedin a way thatis
similar toalinenumberin BASIC. Thatis, itisused bothto keep
track of the current instruction and, as will be explained inthe next
chapter, asa way of referring to any instruction.

5) Theaddressof theinstruction being carried outisstored inside the
CPUinthe PC or Program Counter register. Instructionsarenormally
carried outin order of increasing address.

6) The 6809 has two registers used to manipulate data, the Aand B
registers.
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The BASIC Assembler

Although hand assembling the swap program was easy enough it is
worth making a start on the BASIC assembler even at thisearly stage. So
far, the only process that has to be carried out while assembling the swap
program is to look up the commands such as LDA and replace them by
their numeric codes. This is easy with a little BASIC program. The idea is
to build a table of mnemonic codes and their corresponding numeric codes
using a DATA statement and then, when a line of assembly language is
typed in, the mnemonic code is compared to each entry in the table until a
match is found. So far there are only four instructions to deal with but it is
important to remember that the number will grow and so the BASIC
assembler must be written so as to be easily expanded. Before trying to
understand the program it is worth reminding yourself of the format of a
line of assembly language -

Eachline starts with an optional space then there are anumber of
letters forming the mnemonicthen atleast onespace followedby
digits forming the address.

The program that follows will assemble the swap program given earlier if
you type it in line by line. After the last line of the program type END and
then the BASIC assembler will produce a listing of the machine code
identical to that produced by hand assembly.

1REMBASICASSEMBLERV2.1
10 DATA LDA,146,LDB,214,STA,147,5TB,215,22Z,999

500GOSUB1000

510 GOSUB2000

520 GOSUB3000

530 GOSUB4000

540 GOSUB 5000

550 GOSUB 6000
5601=1+1

5701FI> TTHENSTOP
580G00520

1000DIMAS(50)
10101=0
1020 P=50
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1030 RETURN

2000INPUTLS
20101FL$="END”THENT=1:1=1:RETURN
20201=1+1

2030A$(N=L$

2040 GOT02000

3000J =1

3010 IFMID$(A$(1),J,1)=""THENJ =J + 1:GOT03010
3020M$ =MID$(A$(1),J,1)

3030J=J+1

3040 IF MID$(A$(1),J, 1)< > " THEN

M$ = M$ + MID$(AS(1),J,1):J =J +1:GOTO 3040
30500=J+1

3060RETURN

4000RESTORE

4010 READCS,C
4020IFC$="2Z2"THENER = 1:GOT09000
4030IFC$=M$THENRETURN
4040G0OTO04010

5000 A =VAL(MID$(A$(1),J))
5010 RETURN

6000PRINTP;TAB(5);C;TAB(10);A
6010P=P+2
6020 RETURN

9000 PRINT “ERROR-";ER;"*****
9010 RETURN

After you have typed the BASIC assembler in it is important that you
save it on tape because in subsequent chapters it will be improved on and
added to. The program is written using BASIC subroutines for each job
that the assembler must carry out. This makes later modification a matter
of altering subroutines. A brief description of the program follows-

16



Chapter 2 Registers and Operations

Linenumber/ purpose

subroutine
Identification-thefirst figureisa chapter
reference, thesecondindicatesupdateswithin
thechapter.

10 Definescorrespondencebetweenmachinecode
and mnemonics. The end of the listis markedby
the dummy mnemonicZZZ.

500-560 Main program

1000 Initialisation

2000 Readsassemblylanguage programinto thearray
A$untilEND.

3000 Finds mnemonic codebyscanning through the

stringtofindthefirstgroup of non-blank
characters. Stores themnemonic codein C$.

4000 Looksformnemoniccodeinthetableandreturns
the appropriate machine code foritin C. Ifa
match is not found then GOTO 9000 toreportan
error.

5000 Gets the address thatfollows the mnemonic code
andstoresitin A.

6000 Prints the machine code produced fromoneline
ofassemblylanguage andkeepstrack of the
address thatitis to bestoredin using P.

9000 Prints an error message.

So far the BASIC assembler is not very sophisticated. For example, it
doesn’t handle errors at all well, but it does contain the start of the
subroutines that will be developed to give the full assembler.

If you can’t follow the workings of the BASIC assembler so far then

don’t worry: just type it in and see that it really does change the assembly
language in the program swap to machine code.
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Storing the code - CLEAR and EXEC

The first part of the BASIC assembler will change mnemonic codes to
machine code and produce a list of numbers that corresponds to the
assembled program. It has already been pointed out that for a machine
code program to be of any use it has to be stored in memory and not just
listed on the screen or on paper. There are two stages to storing the
program in memory. Firstly, some memory has to be set aside so that
BASIC will not try to use it and secondly, each piece of machine code has
to be transferred to the correct memory location.

Reserving some memory is easy with the Dragon. The command CLEAR
s,h will reserve s memory locations for string storage and move the top of
memory down so that memory location h is the highest that will be used
by BASIC. in other words CLEAR s,h will reserve memory from address
h+1 up to 32767. Once some memory is available, tranferring machine
code to it is easy using the BASIC command POKE a,d which will store
the number ‘d" in the memory location whose address is ‘a’. Adding these
ideas to the BASIC assembler gives -

1 REM BASIC ASSEMBLER V2.2

5 CLEAR 1000,28671

1020 P=28672

6010 POKE P,C
6020 P=P+1
6030 POKE P,A
6040 P=P+1
6050 RETURN

Line 5 reserves 1K of memory for machine code programs starting at
address 28672 and ending at 32767 This is more than enough for most of
the machine code program examples in this book. Line 1020 initialises P to
ensure that the first item of machine code is stored in the first reserved
memory | location. The changes to subroutine 6000 make it store each
item of machine code in a new memory location (in addition to its original
job of printing the machine code so that we can examine it.

18
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With these changes, the BASIC assembler now leaves the machine
codes stored in the reserved memory when it finishes. If you want to
check that this is true then you could use the BASIC command PRINT
PEEK(a) to examine the contents of each memory location.

All that is left now is to discover a way of actually running the machine
code stored in the reserved memory. Once again Dragon BASIC makes
this particularly easy for us in that if provides the EXEC ‘address’ command
which will start the 6809 obeying a machine code program whose first
instruction is stored at ‘address’. So, to start the swap program running,
all you would have to type is EXEC 28672. However, DON'T try this for the
swap program because apart from it not doing anything useful (or visible)
it doesn’t contain any way to stop itself or to return control to BASIC!

ADDing - a simple operation

So far, all that the 6809 inside the Dragon has done is move numbers
from memory and back to memory. To show the sort of thing that the A
and B accumulators are more often used for and to give an example of a
running machine code program, it is worth introducing the new assembly
language instructions ADDA ‘address’ and ADDB ‘address’. These simply
add the contents of the memory location ‘address’ to the current contents
of the A or B register respectively. Notice that this leaves the contents of
‘address’ unaltered and the result of the sum stored in the register. This is
the reason that the A and B registers are called accumulators because they
‘accumulate’ the answer to a sum. Suppose that we want to add the
contents of memory location 200 to the contents of memory location 201
and, for simplicity, leave the answer in one of the registers. This problem
can be solved as follows:

first, load the A register fromone of the locations, thenadd the
contentsof the second location to the Aregister leaving the answer
inA

In other words:

LDA200
ADDA201

Although this is a simple program, notice that it is more complicated than
writing C+D to add two numbers in BASIC! it is a characteristic of
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assembly language that operations that would be carried out in a single
BASIC statement have to be broken down into individual steps. It would
be easy to add the mnemonics ADDA and ADDB and their corresponding
machine codes 1563 and 217 to the DATA statement in the BASIC
assembler but it is better to wait until we have looked at a few more 6809
operations and add them all in one go.

Micro projects

1) Using theinformation given in this chapter, hand assemble the two line
addition program in the last section. Show the address that each item of
machine code is stored in given that the program is to start at address
28672,

2) If memory location 200 contains 56 and memory location 201

contains 4 before the program is run what do they contain after it is run
and what does the A register contain?
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Chapter Three

Addressing

There are two parts to any assembly language instruction the operation
to be carried out and the address of the memory location that it is to be
carried out on. The subject of how assembly language instructions can
address memory is very important and in this chapter some of the simpler
but more useful methods are described. As addressing is about the use of
numbers and how they are stored inside the computer, it is difficult to
avoid the subject of binary and hexadecimal numbers. Both of these topics
are treated in this chapter, although only in as much as they are useful to
the assembly language programmer.

Operations and addresses

You should be able to see that; in all the examples of assembly language
instructions that have been introduced so far, there is a general pattern.
Each instruction consists of a short mnemonic that determines the
operation to be carried out such as LDA or ADDA and a number that
determines a memory location that is to be involved in the operation. In
general an instruction can take theform-

operation address expression
Where ‘operation’ is, as already described, a mnemonic defining the

operation to be carried out but ‘address expression’ can be one of the
many ways that the 6809 allows a memory location to be specified. At first
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it is often difficult to see why a wide range of ways of specifying an
address is at all usefull In this chapter only the most obviously useful
methods, or ‘addressing modes’, will be described. The more exotic ones
will be dealt with later. So far, the only form of addressing mode that has
been introduced is simply writing the address of the memory location after
the operation. This is usually known as ‘direct addressing’ and it is more
restricting than has so far been admitted!

Direct Addressing

If you go back and look at the few examples given in the previous
chapter you will indeed find that they fit into the format of

operation | address

but what you may not have noticed is that all of the addresses were
smaller than 255. This allowed the address to be stored in a single memory
location following the machine code for the instruction. For example, LDA
255 can be assembled to 146,255 and each number can be stored in a
single memory location but what about LDA 256? Remember, a single
memory location can only hold numbers in the range 0 to 255. The answer
is of course to use more than one memory location to store the address
but this takes us to a second method of addressing memory called
‘extended addressing’. In short, direct addressing can be used to specify
an address in an instruction only if the address is in the range 0 to 255.
Obviously, this is very restrictive and, as you might imagine, direct
addressing is not often used. {In fact there is rather more to direct
addressing than it is worth going into at this stage and, at a more
advanced level, it does have some advantages over extended addressing.)
However before we can move on to using extended addressing it is worth
looking at some details of how numbers are actually stored in memory.

Bits, bytes and binary

So far all that has been said about the nature of a single memory
location is that it can store a number in the range 0 to 255. In fact, a
memory location doesn’t store a decimal number at all. Instead, it stores a
pattern of eight zeros and ones, in other words eight ‘bits’. A group of
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eight bits forms a single unit, referred to as a ‘byte’. What this pattern of
eight bits represents is not something that is uniquely defined. For
example, you might use each bit to represent the state, open or closed, of
eight doors in a house. One of the differences between BASIC and
assembly language is the BASIC has numbers and characters to work with
but in assembler the only raw material is the bit pattern. It is important to
realise that, even though the eight bits that are stored in a memory
location are normally interpreted as a number, this is just one
interpretation. However, this conventional interpretation is so important it
is worth going over the details of standard ‘binary numbers’. Later on it
will be necessary to change the way that the pattern of bits is interpreted
to include negative numbers.

For most people, the decimal system is the best known way of
representing numbers. Using the digits 0 to 9 it is easy to count up to nine
objects. The answer to how to count beyond 9 is so familiar to all of us
that it hardly seems a problem. The decimal system uses a second digit to
record the number of groups of ten that have been counted, a third digit
for the number of hundreds and so on. This is called a ‘place value’ system
since each place represents a multiple of the ‘base’ value. In other words,
the number 245 is to be understood to mean two lots of 100, four lots of 10
and five lots of 1. The binary system is also a place value system that
works in exactly the same way as the decimal system - except that only
the figures 0 and 1 are available for counting. This restriction gives rise to a
place value system that counts in lots of 1's,2’s,4's,8’s and so on. So the
binary number 101 is to be read from left to right as one lot of 4, no lots of
2 and one lot of 1, giving the number that we call five in decimal. As
another example, consider the binary number 1010110. This can be written
as:

place value 128 64 32 16 8 4 2 1
1 o 1 0 1 1 0 O

decimal 128+ 0+32+ 0+ 8+ 4+ 0+ 0
=172

Notice that the place value increases by a factor of 2 for each place to the
left and the decimal equivalent is just the sum of the place values wherever
a1 occurs.

It is not too important that you know how to convert binary to decimal
and vice versa but it is important that you are not worried by binary
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numbers and are prepared to look up the extra details that you need to
know. Now the reason why a memory location can hold numbers in the
range 0 to 255 should be clear. The smallest number that can be
represented by eight bits is 00000000 or 0 and the largest is 11111111
which, if you convert it to decimal, gives 255.

Hexadecimal and binary

The representation of numbers in binary is not difficult to understand
but it is tiresome to have to convert from binary to decimal and vice versa.
For this and other reasons, assembly language programmers have always
tended to use 'hexadecimal numbers’ which are very easy to convert to
and from binary. Hexadecimal, or just ‘hex’, numbers also use a place
value system but this time there are 16 digits: the usual set of 0 to 9 and six
new ones composed of the letters A to F. Because of the use of letters to
represent 10 to 15 hex numbers look very intimidating! However, to count
in hex is easy, first count 0 to 9 as usual but then instead of counting 10,
11 up to 15 count A, B, C up to F. The hex place value system works in the
same way as for binary and decimal except that the value increases by a
factor of 16 for each place to the left. For example, the hex number A30F
is:

place value 4096 256 16 1
0 F
decimal 4096*10+256*3 +0*16+ 15*1 = 41743

As you can see, the place value increases very rapidly and this means that
hex numbers use fewer digits than decimal for the same number.

You don’t have to worry about converting hex numbers to decimal and
vice versa because the Dragon can do it for you. To convert from decimal
to hex use the HEX$ function - e.g. PRINT HEX$(41743) - and to converta
hex number to decimal simply precede it by &H - e.g. PRINT &HA30F. In
fact the Dragon can do a little better than just converting hex numbers to
decimal because you can use a hex number anywhere that you can use an
ordinary number.
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Unfortunately, the Dragon offers us no help in converting from hex to
binary and vice versa. However, this is not difficult. It takes four bits to
represent a number in the range 0 to 15 {to check, convert 1111 to
decimal) and so a single hex digit can be represented by four bits.

bin
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1

x

MTMOO@POONONBWN=OF

To convert from hex to binary all you have todois take each hex digit in
turn and write down its four bit binary equivalent from the table. For
example the binaryequivalentof F3A2 is -

F 3 A 2
mnm oon 1010 0010

To convert from binary to hex all you have to do is form the bits into
groups of four starting from the right then look up each group in the above
table. For example, to convert the number 101101110 to hex -

0001|  0110] 1110
1 6 D

Perhaps the best reason for using hex numbers is the simple observation
that a two figure hex number corresponds to eight bits and so can be
stored in a single memory location. In other words a single memory
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location can store a hex number in the range 00 to FF. In the same way a
four figure hex number can be stored in exactly two memory locations and
so on. It is this correspondence between the number of figures in a hex
number and the number of memory locations it takes to store it, coupled
with the natural way hex and binary work together, that makes hex
numbers so useful in assembly language programming. From now on,
unless there is a good reason otherwise, all of the numbers used in this
book will be hex numbers. Although the Dragon uses &H in front of a
number to indicate that it is in hex it is almost universal in assembly
language to use $ in front of a hex number and this will be used in the rest
of this book. So 10 is ten but $10 is 16!

Extended addressing

After a long digression into binary and hex numbers it is time to return
to 6809 addressing modes. Direct addressing uses a single memory
location to store the address of the memory location to be used in the
operation. Extended addressing takes two memory locations to store the
address. This corresponds to an address in the range 0 to 65535 which is
as much memory as the 6809 can handle. Thus using extended addressing
you can select ANY memory location within the Dragon and there is no
need to extend the number of memory locations used to store an address
to three or more.

To distinguish between an instruction with a direct and an extended
address is fairly easy:

LDAS$3F
isadirectaddressbecauseitislessthan$FFbut
LDAS$3F2C
needs twomemory locationsforthe address andsoitis extended.

What is more interesting is that the machine code for the two instructions
is different. The code for LDA with direct addressing is $96 and its code
using extended addressing is $B6. (Notice the use of hex numbers to
represent the machine codes.) Notice that this means that it is no longer
possible to convert assembly language mnemonics to machine code simply
by looking them up in a table. Now we have to take into account the
addressing mode used as well as the mnemonic. If you look at the row
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containing the mnemonic LDA in the table of Appendix [, you will see that
there is a range of machine codes, each one corresponding to LDA used
with a different addressing mode. You should be able to find the two
values quoted above in the columns headed ‘direct’ and ‘extended’. From
now on, the BASIC assembler is going to have to examine both the
mnemonic and the addressing mode before it can determine the machine
code for a given instruction. So

LDA $3F2C
hand assembles to

B6 3F 2C

Where each pair of numbers occupies a single memory location. Notice
that if the instruction code $B6 is stored at memory location ‘a’ then the
first pair of figures of the address are stored at ‘a+ 1’ and the second pair
at ‘a+2’. In other words, the ‘most significant’ byte (eight bits) is stored
first and the ‘least significant’ byte next.

A practical program

Now that we can address all of the 6809’s memory it is possible to write

a program that will add the contents of any two memory locations
together. In other words, the program will be the assembly language
equivalent of the one line BASIC program -

10A=B+C

First, itisimportant to notice that, unlike the BASIC program, all that the
assembly language program can do is to add two numbers in the range 0
to $FF. For the sake of simplicity let's use memory location $7FFF to store
the result and $7FFD and $7FFE to store the two numbers to be added
together (see fig 3.1). ($7FFF is 32767 which is the highest Dragon address
occupied by RAM used for storing programs.) The program has to perform
the assembly language equivalent of:

add the contents of $7FFD to $7FFE
and put the resultin $7FFF

As already explained at the end of Chapter Two you cannotimplement this

idea as it stands in assembly language. The reason for this is that the only
add instructions that the 6809 has add the contents of a memory location
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Result —p $7FFF
$7FFE
Two numbers
to be
added H

$7FFD

_\__...-/

Fig 3.1 Data for simple addition

28



Chapter 3 Addressing

to the A or B registers, where they also leave the result. So the program
has to written

LDA$7FFD
ADDAS7FFE
STAS7FFF
RTS

You should recognise this as being essentially the same as the addition
program given at the end of Chapter Two but now using extended
addressing. The instruction RTS has been added to the end of the
program so that when it is finished the program returns to BASIC rather
than running on out of control. The details of RTS will be discussed later
but, for now, all that you have to know is that assembly language program
that you intend to run should always end with RTS.

Once again it is worth hand assembling the program to see what the
BASIC assembler has to do. The only real difference is that now, when
looking up the mnemonic codes in Appendix I, you have to take into
account the addressing mode used. In this case the extended mode is used
throughout, apart from RTS for which there is only one choice of machine
code anyway! If the program is loaded into memory starting at $7000
{which is the same as 28672 used in Chapter Two) then the finished
machine code program is -

7000 B67FFD
7003BB7FFE
7006 B77FFF
700939

Notice that the listing is given totally in hex but the usual $ sign
signifying a hex number has been left out to make the listing more
readable. Also notice how much neater the listing is for being in hex: there
are always four figures to the address in the first column, every pair of hex
figures is stored in its own memory location, with each pair stored
consecutively. Thus B6 is stored in memory location 7000, 7F at 7001, FD
at 7002 and so on to 39 stored at 7009. The time has now come to modify
the BASIC assembler so that it can handle different addressing modes and
atlast run our firstassembly language program
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Adding addressing modes to the BASIC assembler

The main change to the BASIC assembler from V2.1 is that now the
DATA statements iolding the information on each mnemonic code have
to include the machine code for each addressing mode possible on the
6809. Rather than just making allowance for the two addressing modes,
direct and extended that have been introduced so far it makes sense to
write DATA statements for each of the five possible addressing modes. A
suitable format and the one that will be used for the rest of the program is

DATA mnemonic,code1,code2,code3,coded,codeb

Where codel through code5 are the machine codes for the five addressing
modes 1 to 5. The names of these modes are -

1 Immediate
2 Direct
3Indexed

4 Extended
5 Inherent

The only problem is that any given mnemonic may not use all five
addressing modes. To record the fact that any addressing mode is illegal
with the mnemonic in question a code of -1, which normally cannot occur
is used. Once the format of the DATA statements has been fixed the rest
of the assembler follows. -

1 REM BASIC ASSEMBLER V3.1
5 CLEAR 1000,&$6FFF

10DATALDA &H86,&H96,&HAB,&HB6,- 1

11 DATA LDB,&HC6,&HD6,EHES, & HFS,-1
12 DATA STA,-1,&H97,&HA7,&HB7,-1

13 DATA STB,-1,&HD7,&HE7,&HF7,-1

14 DATA ADDA &H8B,&HIB,&HAB,&HBB,-1
15 DATA ADDB, &HCB,&HDB,&HEB,&HFB -1
16 DATARTS,-1,-1,-1,-1,6H39

99 DATA 22Z,-1,1,-1,1,-1

500 GOSUB 1000
510 GOSUB 2000
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520 GOSUB 3000

530 GOSUB 4000

540 GOSUB 5000

650 GOSUB 6000

560 |=1+1
5701FI>TTHENSTOP
580 GOTO 520

1000 DIM A$(50),C(5)
1010 1=0

1020 P=&H7000
1030 RETURN

2000 INPUT L$

2010 IF L$="END” THEN T =1:f=1: RETURN

2020 i=1+1

2030 As( =L$

2040 GOTO 2000

3000J=1

3010 IF MID$(A$(1),J,1)="" THEN J=J + 1:GOTO 3010
3020 M$=MID$(As(I),J,1)

3030J=J+1

3040IFJ< =LEN(A$(1)) THEN IFMID${A$(I),J, 1)< > " "THEN
M$=Ms$+MID$(AS$(1),J,1):J =J +1:GOTO3040

3050 J =J +1

3060 RETURN

4000 RESTORE

4010 READ C$

4015 FOR K=1 TO 5:READ C(K):NEXT K

4020 IF C$="2Z2" THEN I=1+1:ER=1:GOTO 9000
4030 IF C$=M$ THEN RETURN

4040GOTO4010

5000 GOSUB 5500

5010 IF AF$="" THEN TYPE=5:RETURN
5020 A =VAL(AFS$)

5030 IF A<266 THEN TYPE=2

5040 IFA> =256 THEN TYPE=4

5050 RETURN
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5500 AF$=""

5510 FOR K=J TO LEN(A$(1))

5520 L$ = MID$(AS(1),K,1)

5625 IFL$="$" THEN L $="&H"

5530 IF L$< >” “ THEN AF$ =AF$ +L$
5540NEXT K

5550 RETURN

6000 PRINT HEX$(P); TAB(5);HEX$(C(TYPE)); TAB(10});
6010 POKE P,C(TYPE}

6020 P=P+1

6025 |F TYPE=5 THEN PRINT:RETURN

6030 IF TYPE=2 THEN PRINT HEX${A):POKE P,A
6040 IFTYPE=4 THEN PRINT HEX$(A):POKE
P,INT(A/256):P=P + 1:POKEP,A-INT(A/256)*256
6050 P=P+1

6060 RETURN

9000 PRINT “ERROR --";ER;"***”
9010 RETURN

In going to this second version, the opportunity has been taken to change
all of the relevant constants to hex and to change the listing of the
program to hex. The main changes are in subroutines4000, 5000 and 6 000.
Subroutine 4000 now scans through the DATA statements to find the
mnemonic stored in M$ but now, when it finds it, it returns the five
possible codes in the array C rather than a single code. Subroutine 5000
now has not only to work out the address following the mnemonic but has
to determine the type of the address and so select the correct code from
the array C. A new subroutine has been added (5500) which called at the
start of subroutine 5000. Subroutine 5500 takes the addressing information
and packs it character by character into the variable AF$ (AF standing for
Address Field). As this transfer is accomplished, a number of changes are
made. First, any blanks that have been included are removed and,
secondly, any $ signs are changed to &H so that the BASIC VAL function
can work the address out correctly. Subroutine 5000 then sets the variable
TYPE to 2 if the address is less than 256 and to 4 if it is greater than 255. If
there is no address field i.e. if AF$="" then the instruction must be like
RTS and then the appropriate type is ‘inherent’ or TYPE=5. Subroutine
6000 is changed to PRINT and POKE a different number of items
depending on the addressing mode.
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Notice that only DATA statements for the 6809 instructions that have
been described so far have been included in the program. In principle there
is no reason why the list of DATA statements shouldn’t be extended to
include all of the instructions in the operation code table given in Appendix
I. However there are a great many instructions in the table and typing in all
the DATA statements in one go is no small task! If you don't feel like
tackling this particular project then the easier alternative is to add the
appropriate DATA statements as instructions are encountered in future
chapters. An advantage of this method is that the BASIC assembler grows
as your knowledge does!

Trying it out

After typing in the above version of the BASIC assembler the obvious
thing to so is to try to assemble and run the simple addition program. RUN
the assembler and type in

LDAS$7FFD
ADDASTFFE
STAS$TFFF
RTS

END

You should see the same listing that you got from the earlier hand
assembly. After the assembler has finished the machine code is stored in
memory starting at $7000. Once again you can check that this is so by
PEEKing each of the memory locations i.e. PRINT HEX$(PEEK(&H7000))
etc. You can run the machine code by simply typing EXEC &H7000. If
everything goes according to plan (or rather program) you should see the
usual Dragon OK printed on the screen indicating that the machine code
program has returned control to BASIC. If anything else happens your
only hope of regaining control of the machine is to press the reset button.
If you are lucky your program will be intact, on the other hand it might not
be! It is worth learning very early on that assembly language is not as
friendly or as safe as BASIC. If you make a mistake in a machine code
program you won’t get a error message, just a Dragon that behaves
oddly.
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If everything did work OK, and with such a short program there is no
reason why it shouldn’t, then you should find the the content of memory
location $7FFF is indeed the sum of the contents of $7FFD and $7FFE. The
easiest way to check that this is true is -

PRINT PEEK(&H7FFF), PEEK(&H7FFD),PEEK(&H7FFE)

You can use POKE to change the contents of the two memory locations
$7FFD and $7FFE and then EXEC the machine code again just to make
sure that it all works.

Immediate addressing

So far, the only two addressing modes that we have looked at - direct
and extended - are hardly different enough to give the flavour of the
subject. After extended addressing, the most frequently used addressing
mode is probably ‘immediate addressing’ and so it is important to
introduce this mode as early as possible. Consider the problem of adding a
constant, for example, 3 to the contents of a memory location. So far, the
only way that this could be done would be by using the addition program
used as an example in this chapter. Immediate addressing is sometimes
called ‘immediate data’ because it allows the data to be stored in the
memory location following the machine code for the instruction. Notice
that in this case the number following the instruction code IS the data not
the address of the data. In assembly language, immediate addressing is
indicated by a # sign. For example,

LDA #$3
loads the A register with 3 in contrast to

LDA$3
which loads the A register from memory location 3. The hand assembly of
LDA #3is-

86 03

To change the BASIC assembler to handle immediate addressing is
easy . Simply add the following lines -

1 REM BASIC ASSEMBLER V3.2
5025 IF TYPE=1THEN RETURN
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6522 |F L$ =" #” THEN TYPE=1:AF$ ="":GOTO 5540
6045 IF TYPE=1 THEN PRINT HEX$(A):POKE P,A

6060 TYPE=0
6070 RETURN

Notice that immediate addressing doesn’t make sense with all types of
instruction. For example, STA #3 is illegal because there would be no
point in storing the contents of the A register in the memory location
following the instruction code so what would the 3 mean? Immediate
addressing only makes sense when used with instructions that obtain data
from memory and not with those that store data in memory.

Summary

1) Therearemany ways of specifyingwhere the data thatan
instruction will operate onislocated in memory. These ways are
called'addressingmodes’.

2) Directaddressingis used to access data in memory locations0 to
$FF. Inthis case, the addressis stored in a single memory location
following theinstruction code.

3) Extendedaddressing can address memory from0 to $ FFFF which
isthe whole of the6 809 saddress range. In this case, the addressis
storedin the two memory locations following the instruction code.

4) Immediate addressing isdifferent from the previous twomodesin
thatthe data for theinstructionisstored in the memory location
following the instruction code.

5) Bitpatternsand binary numbersarethe fundamental data of
assembly languageprogramming.

6) Hexnumbers are more convenient then decimal numbersandare
almost always the standard way of writing addresses, dataand
instruction codesin assembler.
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Micro Projects

1) How many memory locations does the number $F3095E6F require to be
stored in memory?

2) Convert the following hex numbers to binary -
a) $0100
b) $1000
c) $7FFF
d) $FFFF

Do any of these numbers seem familiar!?
3) Whatis wrong with -
alSTB #$34
b) LDA #$FF32
4) Hand assemble the following program -
LDA #$10
ADDAST7FFF
STA$TFFF
RTS
Check your answer by using the BASIC assembler.

What does this program do?
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Jumps, Loops and Labels

Imagine how limited BASIC would be if you didnt know about the GOTO
statement. Without GOTO, you could not code jumps or loops in your
program. This is such a fundamental part of programming in any language
that it is important that you become familiar with the assembly language
equivalent of GOTO. This also leads us on to consider what is really the
last new idea to be included in the BASIC assembler - labels. If you have
been disappointed by the example assembly language programs in the
earlier chapters because of how little they manage to do, then you will be a
little happier with the main example in this chapter, at least it displays
something on the screen!

The JMP instruction

As described in Chapter Two, the address of the memory location that an
instruction is stored in is in some ways like the line number of a BASIC
command. In particular the assembly language instruction -

JMP address

will cause the next instruction to to be the one starting at "address’. There
are three addressing modes that can be used with the JMP instruction,
direct, extended and indexed, the last of which is yet to be described. So
JMP $4323 is a valid JMP instruction which causes the instruction at $4323
to be carried out next. If there isn’t an instruction stored at this address
then things will go very wrong. Once again, unlike BASIC, machine code
won'’t give you a friendly error message to tell you that there is no such line
number, rather address, because of course the address referred to in a
JMP instruction always exists! What happens if you JMP to a memory
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location that doesn’t contain machine code is that the 6809 will obey
whatever collection of numbers the memory does contain as machine code
and so the result is entirely unpredictable behaviour. For this reason you
have to be very careful that JMP instructions do go to the correct location.

The JMP instruction look simple enough to use for any one familiar with
the GOTO instruction. However there is fundamental problem that both
GOTO and JMP share. If you are in the middle of writing a BASIC
program and you know that you want to GOTO a line further on in the
program then how do you know its line number? The trouble is that you
only know the line numbers of commands that you have already written.
This is known as the ‘forward jump’ problem (see fig 4.1). The usual
solution in BASIC is to either guess the line number and then correct the
GOTO statement when the program is finished or just leave it undefined
and go back and fill in the missing line number later. In assembly
languagge the problem is agravated because while you are writing the
program using mnemonics you don’t know the address that any given
instruction will be stored at, this is something that is only discovered when
you assemble (by whatever method) the program. This makes ‘backward’
jumps difficult to handle, let alone forward jumps! For example, suppose
that you are writing a program that will load the A register from a number
of memory locations in turn and store its contents in a single location (why
you might want to do this will become clear after the sound producing
examples in Chapter Nine.) The program that you would write might look
something like -

LDA$7F00
STA$FF20
LDAS$7F01
STAS$FF20
JMP 27?2

Where the four question marks indicate that the address for the JMP is
unknown. To make the program into a loop the JMP should transfer
control back to the first instruction of the program. The address of the first
instruction obviously depends on where the program is loaded into
memory. If the program is loaded, as in all the previous examples, starting
at $7000 then obviously the correct address for the JMP instruction is JMP
$7000. However, suppose you wanted to JMP to the third instruction in
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960 ( BASIC program )
970 already written
980
990
1000 GOTO 7?7?72 i
program to
be written

Fig4.1 The forward jump problem
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the program, i.e. LDA $7F01, how would you know its address? The
answer is that you would have to assemble the program! This doesn’t
sound too difficult until you realise that if you make any changes to the
program that inserts or deletes instructions then the chances are that the
address of the instruction that you are JMPing to will change and, to make
the program continue working, you have to change the JMP addresses. If
you think about the difficulties of actually using an instruction that jumps
to a particular address then you will soon see the need for adding address
labels to the BASIC assembler.

Address labels

The use of a mnemonic code to represent the machine code
corresponding to an instruction should seem like a fairly straightforward
but very useful idea by this stage. A very similar idea can be used to make
the handling of addresses just as easy. If the example of the last section
had been written as -

START LDA $7FF0
STASFF20
LDAS7FF1
STASFF20
JMPSTART

then the meaning of the program would have been clear. The final JMP
instruction is obviously intended to transfer control to the instruction
‘labelled” START so forming a loop. When the program is assembled
START as used in JMP START has to be changed to an address. To be
more precise it has to be changed to the address of the instruction that it
labels. START is an example of an 'address label’ (or just ‘label’) There are
just enough similarities between a BASIC variable and a label to be
confusing. A BASIC variable has a value associated with it and so does a
label (i.e. the address of the instruction that it labels) but a label is used
only in the translation of assembly language to machine code whereas a
BASIC variable exists while a program is running. It is better to think of a
label as more like a mnemonic code that stands for an address rather than
as one which stands for machine code.

There are two ways that a label can appear within a program:
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1) As part of an instruction, standing in place of an address.

2)Infrontof an instruction, solabelling a position withinthe
program.

The use of a label in front of an instruction can be thought of as defining
its value or address. If you think about it for a moment, it only makes
sense to define a label once in a program but once so defined it can be
used as part of any instruction as often as required.

Adding Labels to the BASIC assembler

Adding a label facility to the BASIC assembler is very easy. First, a new
pair of arrays needs to be defined, T$ to hold the labels and T to hold their
corresponding address values. When a label is defined, T$ is searched and
as long as the label isn't already in T$ (in which case an error is reported) it
is added to the list and its address is stored in T. The only problemis, how
do we tell the difference between a label and an ordinary mnemonic code?
Some assemblers demand that a label should always start at the beginning
(i.e. without any blanks before it) and a mnemonic should always have at
least one blank before it. Following the convention of DASM, the
assembler from Compusense, labels will be distinguished by starting with
“@". So legal labels take the form:

@START
@LOOP
etc.

This convention is very handy because it allows the BASIC assembler to
detect a label by examining just the first character. If, when using this
method, a label is detected following the mnemonic code, then the array
T$ is searched. If the label isn’t found, then it hasn’t been defined and an
error should be reported. |f the label is present in T$ then the
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corresponding address stored in T is used to replace the usual contents of
AF$. The changes required are -

1 REM BASIC ASSEMBLER V4.1
17 DATA JMP,-1,&HOE,&H6E,&7E, -1

1000 DIM A$(50),C(5),T$(50),T(50)
1030 LC=0

1400 RETURN

3060 {F LEFT$(M$,1)="@" THEN GOTO 3500
3070 RETURN

3500 S$=M$

3510 GOSUB 7000

3520 IF F>0 THEN ERR=0:GOTO 9000
3630 LC=LC+1

3540 T$(LC) =M$

3550 T(LC)=P

3560 GOTO 3010

5560 IF LEFT$(AF$, 1)<> "@" THEN RETURN
5560 S$=AF$

5570 GOSUB 7000

5580 IF F=0 THEN ERR=3:GOTO 9000

5590 AF$ = STRS${T(F))

5600 RETURN

7000K =1

7010 IF K>LC THEN F=0:RETURN
7020 1FT$(K)=S$ THEN F=K:RETURN
7030 K=K+1

7040 GOTO 7010

Apart from the updates to the existing subroutines, this version includes
two new modules. Lines 3500 to 3560 check for the existence of the label
in the array T$ and, if it isn’t there, it adds it along with the current address
in T. Subroutine 7000 searches for the string S$ in the array T$. On, return
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the variable F is 0 if the string wasn’t found and equal to its position in the
array if it is. Lines 5550 to 5600 detect a label in the address field, use
subroutine 7000 to find it in the array T$ and then substitute the address
stored in T. Also notice that the DATA statement for the JMP instruction
has been included.

To test the new version of the BASIC assembler try -

@STARTLDASTFFO
STASFF20
LDAS7FF1
STA$FF20

JMP @START

The ability to handle labels can be seen in the way that the last line is
assembled to -

7E 700C

Now that labels can be used, the JMP instruction is easy to use. All you
have to do is label any instruction in the program that you want to JMP to
and, as long as you don’t define the same label twice, you can JMP to it as
often as you like. However, this simple picture is still spoiled by the
problem of forward jumps.

Forward jumps and two-pass assembly

The BASIC assembler V4.1 will handle labels but only if they are defined
before they are first used in an address field. For example, if you try to
assemble -

LDAS7FFO
JMP @SKIP
STAS$FF20
@SKIPLDAS7FF1
END
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you will get an error message because when the assembler reaches the
JMP @SKIP instruction the label @SKIP is not yet defined - it is further
down the program. This restriction on the use of labels is so serious that, if
allowed to persist, it would make assembly language programming very
difficult. Fortunately the solution is quite simple. To make sure that any
label that might be used in a program is defined, all that the assembler has
to do is read through the program, picking up all the label definitions
before it attempts to produce a final machine code assembly. In other
words, the assembly should make two passes though the assembly
language program. The first pass just serves to record the label definitions
and the second pass uses these definitions to produce a correctly
assembled program. Notice that the first pass that the assembler makes
through the program has to assemble the program the best it can so that
the instructions take up the correct amount of memory and the labels are
defined at their correct addresses. This implies that the easiest way to
change the V4.1 assembler into a two-pass assembler is just to make it
automatically run twice over any assembly language program, the first
time ignoring any errors that are generated because labels are undefined
and the second time using the definitions collected in the first pass.

Changing the BASIC assemblerinto a two-pass assembler

Adding a two-pass facility to the BASIC assembler is much simpler than
you might think. All that has to be done is to change the main program
into a loop,

initialise 1
FORPASS=1T702
initialise 2
assemble

NEXT PASS

and be careful about where things are initialised. For example, there would
be no point in doing the first pass if the array T$ used to hold the labels
was cleared between passes! The only other changes to the assembler
involve the use of the variable PASS to decide when an error should be
reported. If an undefined label is encountered then this is now only an
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error if the assembler is on pass 2. Also, as all the labels should have been
defined after pass 1, discovering that a label is already in T$ isn’t an error
in pass 2. Make the following modifications to the BASIC assembler:

1 REM BASIC ASSEMBLER V4.2

515 FORPASS=1T02
518 I=1:P=&H7000

670 IF I< =T THEN GOTO 520
575 PRINT

580 NEXTPASS

590 STOP

3520 IF F>0 AND PASS=1 THEN ERR=2:GOTO 9000
3625 IF F>0 AND PASS =2 THEN GOTO 3010

5580 IF F=0 AND PASS =2 THEN ERR =3:GOTO 9000

If you run the new version of the assembler on any of the previous
examples you will find that you now get a listing of the machine code
twice - once on each pass through the program. Although the second one
is the only one that has any chance of being correct, the first listing does
provide some information about the way that the assembler is working and
so it will be left as a feature for the time being, until a better version of
subroutine 6000 is written later on.

When an undefined label is encountered on the first pass the value zero
is used as its temporary address so that the rest of the program can be
assembled. However, the current way that the assembler selects direct or
extended addressing causes something of a problem. For example, if you
try-

JMP @SKIP
LDA #0
@SKIPLDA #1

(a correct program that doesn’t do anything useful!) you will find that on

the first pass the JMP @SKIP is assembled as a direct address because
@SKIP has the temporary address of 0 but on the second pass JMP
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@SKIP is assembled as an extended address because @SKIP now has an
address greater than 255. This change in addressing modes is a problem
because extended addressing uses one more memory location than direct
and so, on the first pass, the address that @SKIP labels is different from
the address it labels on the second pass - obviously, the resulting machine
code will not work. The problem is that on the first pass the assembler
doesn’t know whether undefined labels are going to be defined as direct or
extendedaddresses. The solution to the problem is to change the way that
a direct address is selected as the correct addressing mode. If the
assembler assumes that, unless otherwise informed, all addresses are
extended then the amount of memory used on the first pass will be the
same as the amount of memory used on the second pass and the
addresses assigned to labels will not change. After all, there is no real need
to use direct addressing, other than to save one memorylocation. In other
words LDA $0030 (in extended mode) works just as well as LDA $30 (in
direct mode). Later on, other features of direct addressing will be
explained that make it more useful so, to be able to carry on using it, the
convention that a direct address must start with a ">’ sign will be used
from now on. So

LDA >$30
will be assembled as a direct address but
LDA $30
will be assembled as an extended address.
The changes to the BASIC assembler to make extended addressing the
default mode and introduce the new symbol for direct addressing are:
5030 IFTYPE=2THENRETURN
5040TYPE=4
6521 IFL$=">" THEN AF$="":TYPE=2:GOTO 5540
Now the BASIC assembler will handle forward and backward JMPs by
making two passes through the program correctly. To check this, try
assembling any of the previous examples. Make sure that the address

following a JMP instruction really is the address of the first memory
location in which the correctinstruction is stored.
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Subroutines, JSR and RTS

Now that the assembly language equivalent of the BASIC GOTO has
been introduced, it is only a small step to the assembly language
equivalents of the BASIC GOSUB and RETURN. The JSR address (Jump
to SubRoutine) will transfer control to the instruction stored at ‘address’
but like the BASIC GOSUB it causes the 6809 to store the address of the
instruction following it. This stored address is used by the instruction RTS
(ReTurn from Subroutine) to transfer control back after the JSR. Thus the
JSR and RTS pair exactly mimic the behaviour of the BASIC GOSUB and
RETURN instructions and so allow us to write and use assembly language
subroutines.

The JSR instruction can be used with the same three addressing modes
as the JMP instruction - direct, extended and indexed. The fact that the
RTS instruction is a little odd when it comes to addressing modes has
already been mentioned. The RTS instruction does use an address, but the
address is supplied by the 6809. In other words, when you use the RTS
instruction, you do not have to explictly give the return address and in this
sense the address is ‘inherent’ in the instruction. There are other
instructions like RTS that sometimes do not need a programmer-supplied
address and this gives us a fourth addressing mode to add to direct,
extended and immediate: ‘inherent addressing’. (Corresponding to
TYPE =5 in the BASIC assembler.)

Before going on, enter the DATA statement for the JSR instruction in
the BASIC assembler {RTS is already present):

18 DATA-1,&H9D,&HAD,&HBD, -1

Using subroutines - more labels

Since the JSR instruction uses the same addressing modes as the JMP
instruction it make sense to allow labels to be used in the same way.
However, the JSR instruction is often used to gain access to machine
code subroutines already present in the BASIC ROM and this makes the
use of labels a little more complicated. For example, there is a machine
code subroutine that will print a character on the Dragon’s text screen that
starts at $800C. The character to be printed is stored as its ASCII code in

47



Language of the Dragon

the A register before transferring to the subroutine. The following short
program will repeatedly print the letter A on the screen -

@LOOPLDA #$41
JSR$800C

JMP @LOOP

END

The first instruction loads the A register with $41 which is the ASCII code
for the letter A. The second instruction calls the subroutine at $800C which
prints the A on the screen and then returns control to the JMP instruction
which repeats the program forever - or until you press the reset button. If
you enter this program using the BASIC assembler you can run it using the
usual EXEC &H7000. After the screen has filled with As you may find it
difficult to see the As being printed - this is your first taste of how much
faster assembly language is than BASIC!

Programs would be easier to read and assembly language generally
more friendly if labels could be defined to correspond to fixed addresses
outside (i.e. in the ROM) the program that you are currently writing. For
example, if the label @PRINT could be defined to be $800C the JSR
instruction in the previous example could be written as JSR @PRINT
which is much easier to understand. Most assemblers allow a label such as
@PRINT to be defined by the statement -

@PRINT EQU address

where address is a number in the range 0 to $FFFF. The statement would
be read as ‘the label @PRINT is EQUal to address’ and its effect would
indeed be to set @PRINT to correspond to the ‘address’. The form of the
statement looks like a standard assembly language instruction but as
should be obvious that EQU ISN'T an assembly language mnemonic. It is
an instruction to the ASSEMBLER to give a label a value to be used in the
rest of the assembly. Instructions like EQU are called ‘pseudo operations’
because they look like 6809 mnemonics but they are in fact instructions to
the assembler. The pseudo op EQU is worth adding to the BASIC
assembler.
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Adding EQU to the BASIC assembler

EQU is just the first of a number of pseudo ops to be incorporated into
the BASIC assembler so it makes sense to prepare for them by adding
EQU in a general way.

1 REM BASIC ASSEMBLER V4.3

550 IF PS =0 THEN GOSUB 6000
555 IF PS>0 THEN GOSUB 6500
560 I=1+1:PS=0

4001 IF M$="EQU” THEN PS=1:RETURN

6500 IF PS<>1 THEN RETURN

6510 IFPASS=1THENT(LC)=A

6520 |F PASS =2 THEN PRINT TAB(15);A%(1)
6530RETURN

As the form of the EQU statement is the same as a standard assembly
language instruction, the approach used is to let the assembler process it
as usual and then correct the result later on. Line 4001 detects the EQU
and sets PS (for PSeudo op) to 1. The label in the instruction is
automatically added to the array T$ but its definition is the address of the
current instruction rather than the address following the EQU. This is
corrected by subroutine 6500 which also handles the printing of pseudo
ops on the second pass.

Using EQU

Now that the BASIC assembler can define labels using the EQU pseudo
op, the previous ‘print A on the screen’ program can be written as-

@PRINT EQU $800C
@LOOP LDA $41
JSR@PRINT
JMP@LOOP

END

Once again you should be able to enter the program to the BASIC
assembler and then run it using EXEC &H7000 with the same result as
before.
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The interesting thing about EQU is that, once you have introduced it,
there are all sorts of other ways that you can use labels. For example, the
secondinstruction in the program loads the A register with the ASCII code
for the letter ‘A’ but this is not something that is very clear just by reading
the program. If however the program is written as -

@PRINTEQU $800C
@AEQU$41
@LOOPLDA @A
JSR@PRINT

JMP @LOOP

then the use of a label as part of the immediate address field of the LDA
instruction once again makes the program slightly more readable. What
might surprise you is that this program can be assembled by the current
version of the BASIC assembler without any modifications! In other
words, although not their primary purpose, labels can be used in place of
data values in instructions.

As a final example of using the @PRINT subroutine try -

@PRINTEQU$800C
LDA #0

@LOOP JSR @PRINT
ADDA #1

JMP @LOOP

END

The first instruction loads the A register with 0. The nextthree instructions
form a loop that prints the character corresponding to the ASCII code in
the A register, then adds one to the A register and so on. The result is that
every character that the Dragon can display is repeatedly printed on the
screen. You may be wondering what happens when the contents of the A
register reach 255 and you try to add one more to it? The answer is that it
resets to zero and so the wholecycle repeats itself.

Summary

1) The main topics ofthis chapter have been the way the instructions
JMP,JSRandRTS are used to transfer control together with the
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ideaofaddress labels and theirimplementation. Inherentaddressing
wasintroduced.

2) The problems encountered with forward jumpslead tothe
solution of atwo-pass assembler, the first pass togather the
definitions of the addresslabels and the second pass tocorrectly
assemblethe program.

3) Finallytheidea of anassemblerpseudo op wasintroduced byway
of EQUused tosetlabels to givenvalues.

Micro Projects

1) Add subroutine6 900 to print alistof all thelabels used ina
program along with their corresponding addresses. Make sure that
the tableisonly printed atthe very end of the second pass.

2) A machine codesubroutine startingat$8006 inthe BASIC ROM
readsthe Dragon’skeyboardandreturnstheresultinthe A register.
Ifnokeyis pressed then the A register containsO0. If akeyis pressed
then the Aregister contains the ASC i code of the corresponding
character. Writeand testa machine code program that willread the
keyboard and printthe result on the screen nomatter whatitis. Try
to make anintelligent use of labels in your program.
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Logic Instructions

At some point in learning assembly language, you have to become
acquainted with the entire range of instructions that are at your disposal.
This problem didn’t arise when you were learning BASIC because the
operations of BASIC are the familiar operations of arithmetic, +,-,* and /.
In assembler the only type of data that you have is a pattern of bits and
each of the operations is concerned with changing or manipulating these
bit patterns. The problem for most people beginning assembly language is
to see how to use these primitive operations to produce meaningful
operations on the data that the bit patterns represent.

This may sound like a very abstract and strange way of thinking about
things. Surely a bit pattern is always nothing more than a binary number?
The answer is, that while a bit pattern can always be interpreted as a
binary number, this is not always the best way to think about it. For
example, if you consider the contents of two memory locations as
numbers in the range 0 to $FF then it makes sense to consider arithmetic
operations, such as addition, on these numbers. However, suppose the bit
patterns stored in the two memory locations are being used to represent
characters, i.e. they are ASCIlI codes, then, although they can still be
interpreted as numbers, adding them together makes very little sense!

This lack of familiarity with the use of bit patterns doesn’t make the
range of machine code operations any more difficult to understand; after
all, they are very simple operations. What is difficult is seeing how these
very simple operations can be put together to do anything useful. The
purpose of this and the next chapter is to explain the action of all of the
6809’s operations on data. At this stage you may find that you understand
what the operations are doing, but not why you would ever want to use
some of them. For now, concentrate on gaining a rough idea of what the
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operations are all about and later on as you examine the examples and write
your own programs you will find that the use of each instruction will
become clear.

The logical operations

The logical operators AND, OR and NOT should be familiar to you from
Dragon BASIC and their use in |F statements. What you might not be so
familiar with is that AND, OR and NOT are operators in the same sense as
+,* etc are. The only difference is that, instead of working on numbers,
AND, OR and NOT operate on the two values True and False, or T and F
for short. If A and B are two statements that are either true or false then
the following table illustrates the meaning of A AND B

A B | A AND B
F F | F
F T | F
T F | F
T 7T 7

You should be able to work out the result of each line of the table using
nothing more than common sense. For example, if A is false and B is true
then the combined statement A AND B is clearly false. In fact the
statement A AND B is only true if BOTH the statements A and B are true.

You probably already know that the above table is called a ‘truth table’
and that all of the operations of logic can be summarised by similar truth
tables. The way that the logical operators of 6809 assembly language are
also best described by using truth tables. The only real change is that
instead of T and F they work in terms of 1 and 0 and on all the bits of a
memory location at once.

ANDA address and ANDB address

The 6809’'s AND, instruction in keeping with all of the other logical
instructions, will AND the contents of a memory location with the current
contents of the A or B register where it also leaves the result. The idea that
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an operation works on a value from memory and a value in one of A or B is
something that is familiar from the way that ADDA and ADDB work. The
truth table for the AND operation is -

reg. mem. | result
0 0 | 0
0 1 | 0
1 0 | 0
1 1 | 1

where reg. and mem. signify a bit in the appropriate register and in
memory respectively. The only extra complication is that the operation is
applied 'bitwise’ to the two eight bit values. The meaning of ‘bitwise’ is
best explained by an example. If the A register contains $D5 and the
memory location contains $E7 then the result of AN Ding them together is -

A register 1 1 0 1 0 1 0 1
memory 1 1 1 0 1 1 1 0
result 1 1 0 0 0 1 0 0

or in other words, $C4. You can see that there is only a 1 in the result
when both the A register and the memory location contain a 1 in the same
place. This is because the result is obtained by applying the truth table to
each pair of corresponding bits i.e to the first bit in A and the first bit in the
memory location and so on.

Of the addressing modes that have been introduced so far, the ANDA
and ANDB instructions can be used with immediate, direct and extended.
So,

ANDA #$34

and
ANDB $4020

are both legal examples.

ORA address and ORB address

The ORA and ORB instructions work in a similar way to the AND
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instruction, but they produce the bitwise OR of the current contents of the
A or B register and a memory location and leave the result in the register.
The only difference is that the truth table used is -

reg. mem. | result
0 0 | 0
0 1 | 1
1 0 1
1 1 | 1

If you examine the table carefully you will see that the result is 1 if either of
reg. or mem. are 1. As an example of the OR instruction suppose that the
B register contains $E3 and the memory location contains $78. The result
would be -

B register 1 1 1 0 0 0 1 1
memory 1 1 1 1 1 0 0 0
result 1 1 1 1 1 0 1 1

or $FB. Notice that there is a 1 in the result wherever either value has a 1.
The ORA and ORB instructions support the immediate, direct and
extended addressing modes, so

ORB #$F3

and

ORA $2950
are valid examples.

EORA address and EORB address

The ‘exclusive OR’ is not as well known as the OR operation but it is just
as useful. The two instructions EORA and EORB perform the exclusive OR
operation on the contents of the A or B register and a memory location,
leaving the result in the register. The exclusive OR is taken bitwise
according to the following truth table -

reg. mem. | result
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 0
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Notice that the result is a 1 only when one of reg. or mem. is 1. That is the
result is 1 if either but not BOTH is a 1. As an example of the EOR
instruction suppose the A register contains $CE and the memory location
contains $5F then the result is -

A register 1 1 0 0 1 1 1 0
memory 0 1 0 1 1 1 1 1
result 1 0 0 1 1] 0 1] 1

or $91. Notice that there is a 1 in the result only where there is exactly one
1 in either of the register or memory values. You can use all the addressing
modes that we have met so far (with the exception of inherent addressing)
with EORA and EORB so

EORA #45
and
EORA $A32A

re both valid examples.

COMA,
COMB and
COM address

The COM (standing for COMplement) is the assembly language
equivalent of the BASIC NOT. It is different from the previous three logical
operations in that it works on a single value. COMA changes the current
value in the A register so that Os become 1s and 1s become Os (as always,
the result it left in the register). COMB carries out the same operation on
the value stored in the B register. In both cases there is no need to specify
an address in the address field because only the value in the A or the B
register is involved in the operation. Like the RTS instruction both COMA
and COMB use the inherent addressing mode. The truth table for the COM
operation is particularly simple -

reg. | result
0 | 1
;] | 0
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and this is applied bitwise as usual. For example, if the A register contains
$6F then the result of COMA is

register 0 1 1 0 1 1 1 1
result 1 0 1] 0 0 0 0

or $90. The only addressing mode that can be used with COMA and
COMB is inherent and the BASIC assembler can already deal with this
mode.

The COM operation also has an extra form - COM address. This
instruction will perform the COM operation on the memory location given
by ‘address’. This seems to invalidate an earlier fundamental observation
that for any operation to take place the data must be brought from
memory into the CPU. For example, COM $7F00 will complement the
contents of memory location $7F00 without the intervention of the A or
the B register. In fact this 'direct’ memory modification is nothing but an
illusion because the contents of the memory are brought into memory and
stored in a nameless temporary register, operated on and then restored
back in the original memory location. (This nameless register is of no great
interest from the programmer’s point of view, in that you cannot use it in
any other situation, but it is nevertheless there). This apparent direct
modification of memory by the COM instruction is something that is
available as an extra with nearly all of the 6809’s instructions that operate
only on a single data value. An example of the COM instruction is-

COM $7032

which complements the contents of memory location $7032. Of those we
have met up to now, COM can be used with the direct and extended
addressing modes.

Adding logic to the BASIC assembler

Allthatis needed to extend the BASIC assembler to handle the 6809°s
complement of logical operations is the addition of the appropriate DATA
statements -
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-

REM BASIC ASSEMBLER V5.1

19 DATA ANDA, &H84,&H94,6HA4,&HBB,-1
20 DATA ANDB,&HC4,6HD4,&HE4 & HF4,-1
21 DATA ORA,&HB8A,&HIA &HAA, &HBA,-1
22 DATA ORB,&HCA,&HDA &HEA,&HFA,-1
23 DATA EORA, &H88,&H98,&6HA8,&HB8,-1
24 DATA EORB,&HC8,&HD8,&HE8,&HF8,-1
25 DATA COMA,-1,-1,-1,-1,&H43

26 DATA COMB,-1,-1,-1,-1,&H53

27 DATA COM,-1,&H03,&H63,&H73,-1

Bit manipulation

The principal use of the logical operators is in changing individual bits
within @ memory location. Usually the problem is that a particular bit or
group of bits has to be set to 0 or 1 without altering the rest. This is usually
referred to as ‘bit manipulation’.

Setting any bit to zero is easy once you recall that the result of an AND
is only one if both of the corresponding bits in the register and memory are
1. Suppose the problem is to set b5 and b2 to zero in memory location
$7F00 which currently contains $36 -

b7 b6 bS5 b4 b3 b2 bl b0
0o 0 1 1 0 1 1 0

{Notice that the bits in a memory location are numbered starting from
zero.) Then, ANDing the memory location with the bit pattern -

11011011
produces the result
00010010
which is the same as the original contents of the memory location except

that b5 and b2 are 0. If you look at the value that the memory location was
ANDed with then you should see that it is a sort of ‘picture’ of what we
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wanted to happen, in the sense that at each bit position where nothing
was to be changed there was a 1 and at each bit position to be zeroed
there was a 0. For example, to zero b7,b5 and b1 you would AND the
contents of the memory location with

b7 b6 b5 b4 b3 b2 bl b0
0o 1 0o 1 1 1 o 1

or $5D. If the memory location in question was $7F00 then an assembly
language program to achieve this would be

LDAS$7F00
ANDA #$5D
STAS7F00

Notice the way that the A register is used to form the AND of the memory
location and the immediate data.

The second problem of bit manipulation, setting a bit or a group of bits
to 1 while leaving the rest unaltered, can be solved in roughly the same
way using OR. In this case the contents of the memory location have to be
ORed with a bit pattern that is zero apart from the bit positions that you
want to set to 1. For example, if you want to set b4, b3 and b0 to 1 in
memory location $7FF0 which currently contains $54 -

b7 b6 b5 b4 b3 b2 bl bo
$64= 0 1 0o 1 0o 1 0o 0

then it should be ORed with
00011001

or $19 which gives -
01011101

or $5D. A program to carry this out would be -

LDAS$7FFO
ORA #$19

59



Language of the Dragon
STA $7FF0

Apart from setting a group of bits to 0 or 1 it is occasionally necessary
to ‘flip’ a bit or a group of bits. In other words if a bit is currently 1 it
should be changed to 0 and vice versa. This action can be achieved using
the EOR operation. In this case the contents of the memory location have
to EORed with a value that is made up of Os apart from the bit positions
that have to be ‘flipped’. For example, to flip b6, b5 and b3 of memory
location $7 FF0O which currently contains $A5 or

b7 b6 bS5 b4 b3 b2 bl b0
1 0 1 0o 0 1 0 1

it has to be EORed with
01101000

or $68 to give the result -
11001101

or $CD. The assembly language program to carry this out would be-
LDAS$7FFO

EORA #$68
STAS$7FFO

You should be able to see that there is a pattern in these three ways of
manipulating bits. Each time the contents of a memory location are
combined using AND, OR or EOR with an immediate data with a particular
bit pattern. The immediate data is usually called a ‘mask’ and the rules for
construction and using a mask can be summarised as follows:

1) To set a group of bits in a data value to 0 without affecting the
rest, construct @ mask with all 1s apart from the bit positions that
have to be set to 0, then AND it with the original value.

2) To set a group of bits in a data value to 1 without affecting the
rest, construct a mask with all Os apart from the bit positions that
have to be set to 1, and OR it with the original value.
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3) To flip a group of bits in a data value without affecting the rest,
construct a mask with all 0s apart from the bit positions that have to
be flipped and EOR it with the original value.

Of course if you want to flip all of the bits in a memory location or in
either of the A or B registers then you can dispense with masks and just
use the COM instructions. All bit manipulation that you might want to do
can be carried out using combinations of these operations.

The shift instructions

The logical operations change bits at particular positions within the bit
pattern. The shift instructions are also used in bit manipulation but rather
than changing bits at given bit positions they move the whole bit pattern
to the right or to the left - hence the name ‘shift operations’. To
understand the way that shifts work it is important that you realise that a
memory location and the A and B registers always hold exactly eight bits,
no more and no less. As an example of a shift operation, consider a simple
shift of all the bits one place to the left. In other words, b7 takes on the
value of b6, b6 takes the value of b6 and so on. This is perfectly simple but
there are two questions that have to be answered. What happens to the
old value of b7 and what value does b0 take on? If the bit pattern was $C3
ie. -

b7 b6 b5 b4 b3 b2 bl O
1 1 o 0 0 o 1 1

then after shifting one place to the left we have

b7 b6 b5 b4 b3 b2 bl bo
1 <- 1 0 o0 o0 O 1 1 ? <-

As you can see the old value of b7 has fallen’ off the end of the number
and there is a problem about what value should be ‘shifted into’ b0. There
are only two ways that shift instructions can vary -
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in, their direction i.e. right shifts and left shifts

and, in the way that they solve the problem of what happens to b7 and
what value should be shifted into b0

It is worth keeping these two things in mind when reading the following
descriptions of the 6809’s range of shift operations.

The logical shift instructions, LSL and LSR

The characteristic that marks out the logical shiftinstructions is that the
bit that is shifted ‘off the end’ of the number is stored in a special register
inside the CPU and a 0 is shifted into the ‘other end’. This special register
is called the condition code register and is fully described in the next
chapter. All that you need to know to understand how shift instructions
work is that a single bit of this register - the C or "Carry bit’ - is used to hold
the bit that would otherwise be lost as a result of the shift.

There are three forms of the LSL (Logical Shift Left) instruction-

LSLA
LsSLB

and

LSL address
The first two perform the LSL operation on the A and B register
respectively and the third on the memory location at ‘address’. The LSL
operation can be imagined as -
C+<b7b6b5b4b3b2b1b0«0
indicating that all the bits are moved one place to the left, that b7 is shifted
into the C bit and a 0 is shifted into b0. For example, if the A register

contains $C5 or -

b7 b6 b5 b4 b3 b2 bl b0
1 1 0o 0 © 1 0 1
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then the result of LSLA is -

C b7 b6 b5 b4 b3 b2 bl bo
1 1 0o 0 o0 1 0 1 0

or $8A with a 1 stored in the C bit. Notice that LSLA and LSLB are both
inherent but the direct and extended addressing modes can be used with
LSL address.

There are also three forms of the LSR {Logical Shift Right) instruction-

LSRA
LSRB

and
LSR address

The operation of the LSR instruction is roughly the same as the LSL
instruction except of course that all the bits are moved to the right. In this
case it is b0 that is stored in the C bit and the 0 is shifted into b7. This is
bestimaginedas -

0--> b7 b6 b5 b4 b3 b2 b1 b0 --> C
For example, if the A register contains $C5 or

b7 b6 b5 b4 b3 b2 bl bo
1 1 0o 0 ©0 1 0 1

then the result of LSRA is -

b7 b6 bS5 b4 b3 b2 bl b0 C
0 1 1 o 0 O 1 0 1

or $62 with 1 stored in the C bit. All the other details of the LSR
instructions are the same as for the LSL instructions.
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2 The rotate instructions, ROR and ROL

The rotate instructions also make use of the C bit to store the bit that
‘falls off’ the end but they also use it as the source of the bit shifted in at
the other end.

There are three forms of the ROL (ROtate Left) instruction -

ROLA
ROLB

and
ROL address

which ROL the A register, the B register and the contents of the memory
location at ‘address’. The ROL operation is best imagined as -

--<--- b7 b6 b5 b4 b3 b2 bl b0 -< -

in other words each bit moves one place to the left as in a LSL but the
value of the C bit is moved into b0 and b7 is moved into C. If you look at
the diagram you will see why the term rotate is used in ROL. For example,
if the A register contains $C5 -

b7 b6 b5 b4 b3 b2 bl bo
1 1 0 o0 0 1 0 1

and the C bit is 0 then after a ROLA the result is -
10001010
or $8A and the new value of the C bitis 1.

There are also three forms of the ROR {ROtate Right) instruction-

RORA
RORB

and

ROR address
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which apply the ROR operation to the A register, the B register and the
memory location at ‘address’ respectively. The ROR instruction works in
the same way as ROL only the bits are moved to the right. The best way to
think of the ROR operation is -

->--- b7 b6 b5 b4 b3 b2 b1 b0 -->--

| |
| |
el [ <

In other words each bit moves one place to the right, the value of the C bit
is moved into b7 and b0 is moved into the C bit. For example, if the A
register contains $C5 or

b7 b6 b5 b4 b3 b2 bl bo
1 1 o 0 o0 1 0 1

and the C bit is 1 the result of RORA is -
11100010
or $E2 and the new value of the C bitis 1.

The key feature of the ROL and ROR instructions is that they both
involve the current value of the C bit. So far the only way that we have of
determining the C bit is via the use of the shift instructions themselves.
Instructions to change the C bit directly are discussed in the next chapter
and these make the ROR and ROL instructions much more useful.

The 6809 does have another shift instruction but this is also better
described as part of the next chapter, on arithmetic.

Adding shifts to the BASIC assembler

Once again the shift instructions present no problems for the BASIC
assembler and adding them is simply a matter of including the new DATA
statements.

1 REM BASIC ASSEMBLER V5.2

28 DATALSLA,-1,-1,-1,-1,&H48
29 DATALSLB,-1,-1,-1,-1,&H58
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30 DATALSL,-1,&H08,&H68,&H78,-1
31 DATALSRA,-1,-1,-1,-1,&H44
32 DATALSRB,-1,-1,-1,-1,&H54
33 DATALSR,-1,&H04,&6H64,&H74,-1
34 DATAROLA,-1,-1,-1,-1,&H49
35 DATAROLB,-1,-1,-1,-1,&H59
36 DATAROL,-1,&H09,&H69,&H79,-1
37 DATARORA,-1,-1,-1,-1,&H46
38 DATARORB,-1,-1,-1,-1,&H56
39 DATA ROR,-1,&H06,&H66,&H76,-1

Labels and data - RMB, FCB and FDB

In the last chapter the idea of using a label to represent an address was
introduced. It may not have been clear from the description that an
address label can be used anywhere that an address can. In particular, as
well as being used in JMP instructions to specify the ‘destination’ address
labels can be used to specify the location of data in operations such as
AND etc. For example, suppose you are using memory location $7FF0 to
store some data, then to load it into the A register you could use-

LDA $7FF0
but perhaps -

@DATAEQU$7FFO
LDA@DATA

is easier to read and understand. Also, if you suddenly decide on a major
program change that moves the location that the data is stored to $7000
then the only change that you have to make to the second version is -

@DATA EQU $7000
In short, labels are just as useful when used to represent the addresses of
data as destination addresses in JMP instructions. However, it is very

important to preserve the distinction between immediate addressing and
extended addressing. For example
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LDA #@LABEL
willload the A register with the value of @LABEL and
LDA @LABEL

will load the A register with the value stored in the memory location whose
address is the value of @LABEL.

This idea of using labels for data is worth extending by the use of three
new pseudo ops - RMB (Reserve Memory Bytes), FCB (Form Constant
Byte) and FDB (Form Double Byte). When a label is used as a destination
address it isn't defined using the pseudo op EQU, instead it is defined by
the position that it occupies in the program - i.e. by the instruction that it
labels. This idea can be used to define labels that ‘mark’ memory locations
used to store data. For example, suppose you want to use three memory
locations to store some information and you don’t really mind exactly
where they are as long as they are out of the way of the program and you
know exactly where to find them. The RMB pseudo op can be used to
reserve any number of memory locations anywhere in a program. For
example,

LDA@DATA
ANDA #$0F
JMP @LOOP
@DATARMB3

the RMB instruction reserves 3 memory locations for data storage at the
end of the program and the label @DATA is equal to the address of the
first of them. The effect of-

label RMB n

is simply to reserve the next n memory locations for data and set the value
of the label to the address of the first one. In many ways RMB looks just
like a standard machine code instruction that takes n memory locations to
store!

RMB is useful for reserving memory (for large tables, for example) but
often in a program it would be an advantage to define a single memory
location as holding data and also initialise it to some value. This is exactly
what the FCB pseudo-op does -

@DATA1 FCB $76
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FCB stores $76 in the next free memory location and sets the label
@DATAT1 to its address. It is important to be clear that FCB is not an
instruction that the 6809 carries out - after all it is a pseudo-op, an
instruction to the assembler to do something. What happens when the
assembler meets

label FCB value

is that it stores ‘value’ in the next memory location fi.e. the one that it
would have used to store the machine code of the next instruction) and
sets ‘label’ to its address. When the assembled machine code program is
run, the only effect that the FCB has had is that memory location ‘label’
contains ‘value’. The pseudo-op FDB works in more or less the same way
as FCB except that it uses two memory locations to store its value and the
label is set to the address of the first of the two memory locations.

Adding these pseudo-ops to the BASIC assembler is easy, if a little long
winded. The existing test for the pseudo-op EQU at line 4001 has to have
tests for RMB, FCB and FDB added to it and subroutine 6500 (the
pseudo-op handler) has to be extended.

1 REM BASIC ASSEMBLER V5.3

4002 IF M$ ="RMB” THEN PS=2:RETURN
4003 IF M$="FCB” THEN PS =3:RETURN
4004 IFM$="FDB"” THEN PS =4:RETURN

6500 IF PS<>1 THEN GOTO 6540

6540 IF PS<>2THEN GOTO 6570

6545 IF PASS =2 THEN PRINT TAB({15);A%(l)
6550 P=P+A

6560 |IFPASS=2 THEN GOTO 6520

6570 IF PS<>3 THEN GOTO 6650
6580 A=A-INT(A/256)*256

6590 IF PASS=1 THEN GOTO 6620
6600 PRINT HEX$(P); TAB(5);HEX$(A);
6610 PRINT TAB{15);A$(l)
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6620 POKE P,A
6630 P=P+1
6640 RETURN

6650 IF PS<>4 THEN RETURN

6660 IF PASS=1 THEN GOTO 6710

6670 LB=A-INT(A/256)*256

6680 HB=INT(A/256)

6690 PRINT HEX$(P); TAB(5);HEX$(HB); TAB(8);HEX$(LB);
6700 PRINT TAB(15);A%(1)

6705 POKE P,HB:POKEP +1,LB-

6710 P=P+2

6720 RETURN

Lines 4002-4004 detect the new pseudo-ops and set the variable PS to a
value that indicates which one has been found. Lines 6540-6560 process
RMB, the only effect of which is to increase the value of P by the number
of memory locations to be reserved. Notice that any label used with RMB
(or FCB and FDB) will be processed in the normal way, just as if the new
pseudo-ops were standard mnemonics and the ‘value’ that follows the
pseudo-ops will be processed as an address field and stored in the variable
A. Lines 6570-6640 process an FCB pseudo-op. The only point to notice
here is that the value POKEd into memory is truncated by line 6580 to be in
the range 0 - 255. In other words, an fcb like FCB $1234 will be interpreted
by the assembler as FCB $34. Lines 6650-6720 process a PDB pseudo-op.
This is done in much the same way as for the FCB, only now two values
are POKEd into memory HB, and LB representing the ’high’ or ‘most
significant’ byte and the ‘low’ or ’least significant’ byte of the value
respectively. Quite a few of the statements in the pseudo-op handler look
complicated but are simply formatting and printing the results of the
assembly so that you can keep track of what is going on.

If you are a little unsure of the way that RMB, FCB and FDB are used
then you will find plenty of examples in forthcoming chapters!

Summary

1) Thelogicaloperators AND, OR, EOR and COM have been
describedin this chapteralong with thelogicalshifts LSL, LSR, ROR
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2) The idea that the 'bit pattern’ is the fundamental type of data that
assembly language programs work with has been emphasised by a
discussion of bit manipulation using the logical operators.

3) Finally the use of labels to mark the location of data was intro-
duced along with the pseudo-ops RMB, FCB and FDB.

Micro Projects

1) Some information is stored in an memory location labelled by @DATA.
Write a short program that will set b6 to 1 and b3, b2 and b1 to 0 without
affecting any other bits.

2) The value $0F is stored in a memory location labelled by @FLIPPER.
Write a program in the form of a loop that will change the value stored in
@FLIPPER to $FO0 the first time through and then to $0F the second time
through, and so on alternating the value $0F with $FO0.

3) How could you use LSL and ROL to move the top four bits in the A
register into the bottom four bits in the B register? (In other words b7, b6,
b5 and b4 of the A register should occupy b3, b2,b1 and b0 respectively of
the B register.)

4) Write a program which defines two memory locations as data using the

FCB pseudo-op and then ANDs their contents together placing the result
in yet another memory location.
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Arithmetic Instructions

This chapter examines the waysinwhiéh the6809 canhandlebitpatterns that
represent numbers. It is important that you are clear about the way that
numbers can be represented by bit patterns and what sorts of things can go
wrong with seemingly simple arithmetic. Fortunately there is no need to
understand and actually be able to do binary arithmetic because the 6809 can
doit for you! As you read this chapter, try to keep in the back of your mind that
the fundamental data for assembly language programming is the bit pattern
and everything else, including numbers, is a result of the way that you are
using bit patterns.

Assembly language arithmetic

Theuseofthe ADDA and ADDB instructions to add two numbers together
hasalready been described in earlier chapters. However, thereismore to 6809
assembly language arithmetic than these two instructions. In particular, there
is the question of working with numbers larger than $FF and that of working
with negative numbers. Before these and other aspects of arithmetic are
explained it is worth explaining the role that arithmetic plays in assembly
language programming. Itis probably true to say thatin BASIC, arithmetic is
basic! But this is not so in assembler. It takes many assembly language
instructions to perform the apparently simple sum

2.321/1.422

that BASIC would acceptin one go or even as part of another instruction! The
result of the high level of difficulty encountered with assembly language
arithmetic is that complex calculations are rarely found in assembly language
programs. If you are planning to write a program that needs much in the way
of calculation, then it is better to think in terms of BASIC or a mixture of
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assembly language and BASIC. If you really do need the undoubted speed
advantage of assembler in doing complicated calculations than you will need
to use a very special collection of assembly language subroutines called a
'software floating point package’. In most cases, however, the sort of
application that assembly language is put to only needs the addition,
subtraction and occasionally multiplication of fairly small numbers and this is
not so difficuit.

Negative binary numbers - two’s complement.

So far the only sort of numbers that we have been able to deal with are
positive numbers in the range 0 to $FF. There is more than one way to
represent a negative number in binary but the most common and the one
used by the operations in the 6809 is the so-called "'two’s complement form’.
Thereis an extensive theory behind two’s complement negative numbers but
all that you need to know to use the negative numbersin assemblylanguageis
their format.

If you ask yourself what makes a number like -6 a negative number, the
answer is that if you add it to +6 the answer is 0. That is to say, the
fundamental property that makes a number negative is that, if x is a number
then its negative, i.e. -x, is a number that when added to x gives the answer
zero. This definition of a negative number seems to be interesting but hardly
useful until you recall an observation made in Chapter Four. If you add one to
amemory location or a register you will eventually reach the maximum value
that can be stored, i.e. $FF. The question is what happens if you add one to
this maximum value? The answer is not that you get an error message,
instead the result is zero.

In other words, 6809 arithmetic works on eight-bit numbers in such a way
that if you start at zero and repeatedly add one you will reach $FF and then
‘roll over’ to zero and carry on round again, just like the mileometer on a car or
a bicycle. The importance of this observation is you can add two binary
numbers together and get the result zero. For example, 2 +254 (in decimal)
gives the result0 as2 + 263 gives the result255 and adding 1 to this makes the
valuerollover to0. In this special sense 254 behaves asifitwas the negative of
2. For any number between 0 and 127 it is possible to find another number
greater than 127 that produces a sum of zero.
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Now you should be able to see how negative numbers can be represented
in binary insuch away that they play their correct part in arithmetic. Instead of
using the whole range 0 to 255 as representing positive numbers the range is
divided into two halves, the positive numbers from 0 to 127 and the 'negative’
numbers from 128 to 256. This representation of negative numbers as the
second half of the total range is known as ‘two’s complement
representation’. Its single great advantage is that if you use it you can carry
out any arithmetic that you like withoutworrying about whether a number is
positive or negative - that aspect looks after itself! Notice that this isn’t true of
the usual decimal way of handling negative numbers. For example, if you do
the sum 3 +4, then you add the two numbers; but the sum 3 + {-4) would be
done by subtraction. In binary, both sums would be done using addition, the
first 3 +4 in the usual way but 3 + (-4) would be done by finding the two’s
complement of 4 and then ADDING it to 3.

You needn’t worry about the details of carrying out arithmetic in two's
complement form because the 6809 will look after you, but you do need to
know the essential features of a two’'s complement number. Any number
between 0 and $7F (0 - 127 in decimal) is a regarded as a positive number.
Puttingthisanother way, anybinary numberthathas b7 equal to O isregarded
asa positivenumber. Any number between $80 and $FF (128 -255 in decimal)
is regarded as a negative number. Putting this another way, any binary
number that has b7 equal to 1 is regarded as a negative number. Thus, if you
are using two’'s complement arithmetic all you have to do to decide if a
number is positive or negative is to look at b7 - if it's 0 then the number is
positive, if it's 1 then the number is negative. For example,

b7 b6 b5 b4 b3 b2 bl b0
o 1 0 1 1 0 0 O

is a positive number equal to $58 and

b7 b6 b5 b4 b3 b2 bl bo
1t 0 1 1 0 1 0 1

is a negative number numerically equal to $B5, or 185 in decimal, and (as
71+ 185 =0 using eight bit arithmetic that rolls over at 255) it represents-71.
Don’t worry about converting negative numbers to their standard decimal
representation and vice versa, because the 6809 contains instructions that
will do it for you.
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The representation of negative numbers in two’s complement form is not a
difficultidea. However, it does contain an illustration of the subtle point about
bit patterns being the fundamental data for assembly language . The example
of a two’s complement number given above is the representation of -71,
however, itisalso thebinary representation of 185. Youshouldbe abletosee
that the question “which is correct?” is not sensible. Which of the two
numbers the bit pattern 10110101 represents depends on how you view it- as
a two’s complementnumber or a simple binary number. This is an important
point because, as far a 6809 arithmetic is concerned, two’s complement
numbers and simple binary numbers are treated in the same way . The only
difference arises when you come to interpret the answer. If, at the start of the
arithmetic, you considered the numbers to be simple binary then you must
interpret the answer as simple binary, but if you regarded the numbers as
two’s complement then the answer must be interpreted as two's complement
-it'sallup to you. So, if you are going to need negative numbers, then select
the two’s complement form. Otherwise stick to simply binary arithmetic.

The ADD and SUB instructions - the D register

The instruction ADD has already been introduced in earlier chapters.
However, as well as its ADDA and ADDB forms it can also be used to add
numbers in the range 0 to $FFFF. To make this possible the A and B register
have to be used together as a single register capable of holding 16 bits. This
giant register is called the D register but this new name shouldn’t be allowed
to obscure the fact that the D register is nothing more than the familiar A and
B registers working together. The instruction -

ADDD address

adds the contents of the memory locations at ‘address’ and at ‘address + 1’ to
the current contents of the D register, leaving the result in the D register.
Notice that two memory locations are used to store the value that is added to
the D register and, in line with the way that extended addresses are stored,
the most significant eight bits are stored in ‘address’ and the least significant
eight in ‘address’+ 1. In the case of the D register, the A register holds the
eight most significant bits and the B register holds the eight least significant
bits. These two facts can be illustrated thus -

data =address | address +1
D = Al B
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Apart from the advantage of working on 16-bit numbers, the ADDD
instruction is very similar to the ADDA and ADDB instructions. It does,
however, pose a slight problem for the BASIC assembler in that -

ADDD §#$FE72

looks like a standard immediate mode instruction but, as tne D register is 16
bits long, the immediate data is also 16 bits or 2 memory locations. This
means that the assembler now has to detect such 16-bitoperationsand POKE
the correct amount of DATA. There are other instructions that use the D
register and there are other 16-bit registersin the 6809 so this modification to
the assembler will beleftuntil later. Aswellasthe ADDD instruction thereare
also the LDD and STD instruction which can be used to load and store the
register. As well as the three ADD instructions, ADDA, ADDB and ADDDthe
6809 also has a corresponding set of three SUB (SUBtract) instructions -
SUBA, SUBB and SUBD. These instructions can be used with the same
addressing modes that can be used with the ADD instruction and work in
roughly the same way, except of course that they subtract the contents of
memory from the current contents of the register, leaving the result in the
register.

Arithmetic with simple binary numbers

The ADD and SUB instructions can be used to carry out arithmetic on
simple binary numbers as long as the result is in the same range as the original
numbers. For example,

LDA #$0A
ADDA #506

will correctly add $0A to $06 leaving the result $10 in the A register or -
LDA #$0A
SUBA #$06

which will correctly subtract $06 from $0A leaving the result $04 in the A
register. You can carry out any arithmetic with the A register as long as the
numbers are in the range 0 to $FF and get a correct answer as long as the
resultis also in this range. If the result is outside this range then the ‘roll over’
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behaviour will make a nonsense of the answer. This is called "arithmetic
overflow’. For example,

LDA #$F0
ADDA #§15

leaves the result 5inthe A register whichis certainly not correct and

LDA #$06
SUBA #507

leaves the result $FF in the A register which once again is far from correct.
When performing arithmetic on bit patterns that you are considering as
simple binary numbers, the rule is that the result mustbe in the same range as
the original numbers. For arithmetic on the A and B registers the range is 0 to
$FF and for the D register the range is0 to $FFFF. Notice in particular this rules
out any negative results for, after all, negative numbers are no part of simple
binary!

You may be worried about the possibility of carrying out some arithmetic in
a program and using invalid results because of overflow. This problem willbe
dealt with in the next chapter where instructions that can be used to test for
overflow will be described.

Arithmetic with two’s complement numbers - the NEG in-
struction

The rule for carrying out arithmetic with two’s complement numbers is the
same as forsimple binary numbersin thatthe result mustlieinthe same range
as the numbers involved in the arithmetic. The main difference is that, of
course, now we can work with negative numbers and get negative results.
For example,

LDA #$06
SUBA #$07

gives the result $FF which is the two’s complement form of -1, which is
correct. Notice that the result is only correct because we are working with
two’s complement numbers. You might be thinking that this distinction
between two’s complement and simple binary is something that can be
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ignored until you get a negative result. However, if you are using two’s
complement representation

LDA #$FF
ADDA #$05

has tointerpreted as adding $FF or-1to $05 which when you take theroll over
into count give the answer $04 which is quite correct. However, if you
interpret the numbers as simple binary then the answer is the same, i.e. $05,
but it isn’t the correct answer to $FF+ $05! Once again the point is that the
arithmetic is the same no matter what the bit patterns represent but the
meaning of the answer depends on whether you are using simple binary or
two’s complement. You can still get an overflow while using two's
complement if the result is outside the range of numbers that can be
represented. How todetect a two’s complement overflow will be described in
the next chapter.

You may be wondering how to convert a negative number to its two’s
complement representation. This is quite easy to achieve using the NEG
instruction. There are three forms of the NEG instruction -

NEGA
NEGB

and
NEG ‘address’

which will perform the NEG operation on the A register, the B register and the
contents of the memory location at ‘address’ respectively. (Notice that there
is NO NEGD instruction.) The NEG operation changes a two’s complement
positive number into a two’s complement negative number. For example,

LDA #$01
NEGA

results in $FF in the A register which is of course the two’s complement
representation of - 1. One of the most useful facts about the NEG operation is
thatitwillnot only change a positive number into a negative number but vice
versa. This is rather like the familiar -(-3) giving the result 3. For example,

LDA #$FF
NEGA
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results in $01 in the A register. So, using NEG you can easily convert between
positive and negative numbers.

To summarise -

1) Using two’s complement representation you can do arithmetic
with positive and negative numbers.

2) The valid range for eight-bit two’s complement numbers is -128 to
+127 and for 16-bit two’s complement numbers is -32768 to
+32767.

3) The result of a two’s complement operation is only valid if the
correct result lies in the range that canbe represented.

4) The NEG instruction can be used to convert between positive and
negative eightbit two’s complement numbers.

The CLR. INC and DEC instructions

Thethree instructions CLR, INC and DEC are in some senses unnecessary
in that they petrform operations that can be carried out using other
instructions. However, they are very convenient to use and, as will be
explained in the next chapter, they do have a slightly different action than
their equivalents.

The CLR (CLeaR} instruction has three forms -

CLRA
CLRB

and

CLR ‘address’
which perform the CLR operation on the A register, the B register or the
contents of the memory locationat’address’ respectively. The CLR operation

is simplicityitself, it loads the register or the memory location with O {i.e. eight
zeros).
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The INC {INCrement) instruction has three forms -

INCA
INCB

and

INC "address’
which perform the INC operation on the A register, the B register and the
memory location at ‘address’ respectively. The INC operation simply adds
one to the register or the memory location.

The DEC (DECrement) instruction also has three forms -

DECA
DECB

and
DEC "address’

which performs the DEC operation on the A register, the B register and the
memory location at "address’ respectively. The DEC operation, as you might
suspect, subtracts one from the contents of the register or memory location.

These three operations CLR, INC and DEC are faster and take less memory
than their equivalents and are nearly always to be preferred.

Adding arithmetic to the BASIC assembler.

Adding the instructions that have been introduced so faris mainly a matter
of including the appropriate DATA statements. The one exception is the
introduction of the operations on the D register that allow immediate
addressing i.e. LDD,ADDD and SUBD. Currently the BASIC assembler can
only handle eight-bitimmediate addressing. All that has to be done to cope
with the possibility of 16-bit immediate data is to test for the presence of “D”
at the end of an instruction and then POKE two memory locations, the first
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with the most significant byte and the second with the least significant byte of
the value of the address field.

1 REM BASIC ASSEMBLER V6.1

40 DATA ADDD,&HC3,&HD3,&HE3, &HF3,-1
41 DATA SUBA, &H80,&H90,&HAO0,&HBO,-1
42 DATASUBB,&HCO0,&HDO,&HEO,&HFO,-1
43 DATASUBD,&H83,&H93,&HA0,&HBO,-1
44 ATACLRA,-1,-1,-1,-1,&H4F

45 DATA CLRB,-1,-1,-1,-1,&H5F

46 DATACLR,-1,&HOF,&H6F,&H7F,-1

47 DATAINCA,-1,-1,-1,-1,&H4C

48 DATAINCB,-1,-1,-1,-1,&H5C

49 DATA INC,-1,&HOC,&H6C,&H7C,-1

50 DATA DECA,-1,-1,-1,-1,&H4A

51 DATADECB,-1,-1,-1,-1,&H5A

52 DATA DEC,-1,&HOA &H6A,&H7A,-1

53 DATA NEGA,-1,-1,-1,-1,&H40

54 DATA NEGB,-1,-1,-1,-1,&H50

55 DATANEG,-1,&H00,&H60,&H70,-1

56 DATASTD,-1,&HDD,&HED,&HFD,-1

57 DATA LDD,-1,&HCC,&HDC,&HEC,&HFC,-1

6024 IFTYPE=1 AND RIGHT$(M$,1)="D"” THEN TYPE=4

The only line that needs any explanationis 6024 which checks fora “D” at the
end of the mnemonic in immediate mode i.e. when TYPE=1. If this is
detected, TYPE is changed to 4 so that two memory locations will be POKEd
with the value in A (see line 6040 in the existing program).

Extended precision arithmetic

So far, the only arithmetic that has been described in detail is eight-bit
simple or eight-bit two’s compiement arithmetic using the A and B registers.
As already briefly discussed, you can use the A and B registers together - as
the D register - but the range of operations on the D register is rather limited.
However, the D register is the simplest way of carrying out 16-bit arithmetic.
If you use the 16 bits to represent only positive numbers i.e. simple binary

80



Chapter 6 Arithmetic Instructions

then you can cope with a range of 0 to 656535. If you use 16-bit two's
complement then the range is -32768 to + 32767 In either case the range is
often large enough not to have to worry about extendingit any further. For
example, if you want to add two numbers that are too large to be represented
in eight bits but are within the 16-bit range then -

LDD @NUM1
ADDD @NUM2
STD @NUM3

where @NUM1, @NUM2 and @NUM3 each label the firstof TWO memory
locations that hold the 16-bit numbers. Subtraction can be achieved by
replacing the ADDD @NUM2 instruction by SUBD @NUM2 instruction. All
the comments about overflow and two’s complement form apply to
arithmetic on the D register if you take into account the much increased
range. So for example, $FFFF is the 16-bittwo’s complement representation
of -1 (because adding 1 to $FFFF makes it roll over’ to 0}.

Thelack of a NEGD instruction makes ita little difficult to obtain the two’s
complement form of a number. This little problem is easy to solve once you
recall that 0-x is -x. So to obtain the two’s complement of a 16-bit number
use-

LDD §#0
SUBD@NUM

where @NUM labels the first of two memory locations that holds the value.

Another problem that often occurs is combining eight-bitand 16 results.
For example, if during a program you have been calculating something that
can easily be represented correctly by eightbits, thenitis awaste of timeand
memory touse 16 bitswhen 8 willdo. However, if at the end of the calculation
the result has to be added to or subtracted from a 16-bit number how can this
be done? The solution is simply to load the eight-bit value into the B register
,clear the A register and carry out the 16-bit arithmetic using the D register.
For example,

LDB@SMALL
CLRA

ADDD @LARGE
STD @ANS
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where @SMALL labels a single memory location holding the eight-bit value,
@LARGE labels the first of two memory locations holding the 16 -bit value
and @ANS labels the first of two memory locations used to store the 16-bit
result. You could subtract the two numbers simply by changing the ADDD
@LARGEto SUBD @LARGE. This method worksforsimple binary numbers
because, to change an eight-bit value into, a 16-bit value all you have to do is
write eight zeros in front. However, things are not so simple for negative
two’s complementnumbers. Forexample, $FF is eight-bit two’s complement
for -1 but adding eight zeros in front gives $00FF which is 16-bit two’s
complement for 265. The correct thing to do is to add eight ONES to the front
of a negative two’s complement number. For example, writing eight ones in
front of $FF gives $FFFF which is the 16-bit two’s complement representation
of -1. Obviously, for positive two’s complement numbers the correct thing to
do is to write eight zeros in front of the number and so it looks as though
extending two’s complement eight-bit to 16 bits is difficult. Once again the
6809 comes to our rescue- this time with the SEX (Sign EXtend) instruction.
If you load the B register with an eight-bit two’s complement number and
than use the SEX instruction the A register will be loaded with eight zeros if
the number in B is positive and eight ones if the number is negative, correctly
extending the number. So, the two’s complement equivalent of the previous
eight-bit/16-bit addition is -

LDB @SMALL
SEX
ADDD@LARGE
STD@ANS

wherethe labels havethe same meaning as before. Notice thatif the values to
be added were simple binary then using SEX tosetthe A register would give
you an incorrect answer - so take care and think about which representation
you are using.

Going back the other way, that is from 16 bits to eight bits, is also easy. If
youare usingsimplebinary then obviously if the result of an operation leaves
the Aregister with nothingin it then you can ignoreit and use the contents of
the B register as a correct eight-bit result. In other words, taking eight zero
bits off the front of a 18-bit number converts it into an eight-bit number. For
example, $0032isthesameas$32but$0132isnotthesameas$32. Fortwo’s
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complement representation things are just a little more complicated. If you
throw away eight zero bits in front of a positive 16-bit two’s complement
number then you can get the wrong answer. For example, $00FF is 256 in
16-bit two’s complement form but $FF is -1 in eight-bit two’s complement
form. The solution is that you have to reverse what the SEX instruction does
in extending eight bits to 16. If the 16-bit number is positive and you can
remove eightzero bits from the frontandleave a positive eight-bit number, or
if the 16-bitnumberis negative and you can remove eightonesfrom the front
andleave a negativeeight-bit number, then you will have the correctresult. If
you cannot do either of these then the 16-bit number is outside the range of
representation by an eight-bit number. For example, $0004 is positive and
removing eight zero bits leaves $04 which is still positive and both numbers
represent 4, $FFFF is negative and removing eight ones leaves $FF which is
stillnegative and both numbers represent -1. Fortunately itis notoften thata
16-bit two’s complement value has to be reduced to eight bits but this
difficulty should emphasise how carefully you have to treat binary numbers.

Multiplication - the arithmetic shifts and MUL

Today’s microprocessors are reasonably good a t addition and subtraction
but most of them make a very poor job of the other two operations,
multiplication and division. The 6809, however, does at least have a simple
multiplication instruction but even with this advanced microprocessor it is
necessary to use a collection of specialpurpose subroutines if you want to do
very much multiplication or division. Before dealing with the multiplication
instruction itis worth introducing the easiest way of multiplying and dividing
by two - the arithmetic shifts.

The logical shifts were introduced in the last chapter and the arithmetic
shifts work in a similar way but their purpose is verydifferent. If you are using
a bit pattern to represent a simple binary number then shifting the pattern one
place to the leftis the same as multiplying the number by 2 and shifting it one
place to the right is the same as dividing it by 2 and ignoring any fractional
part. (Compare this to what happens to a decimal number when you multiply
it by 10 or divide it by 10.) This means that LSL and LSR can be used to
multiply and divide by 2. For example, if the A register contains $0A (10 in
decimall or

b7 b6 bS5 b4 b3 b2 bl bo
o 0o o0 o0 1 O 1 0
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then the result of a LSLA is
00010100

or $14 (20 in decimal) and the result of a LSRA (on the original $0A) is
00000101

or $05.

This use of the logical shiftsis fine for simple binary numbers but when it
comes to two’s complement representation, things start going wrong. If you
shifta negative two’s complement number to theright usinga LSR thena O is
shifted into b7, which changes the number from negative topositiveand this
is not what is supposed to happen when dividing by 2. For example, if the
number in the A register is $86 (which represents -122),

b7 b6 bs b4 b3 b2 bl bo
1 0 0 0 0 1 1 0

then following a LSRA it contains
01000011

or$43 (which represents +67). The correct answer to- 122 dividedby2is-61
orin two’s complement -

11000011

If you compare this number against the original you will see that to get the
correct answer only needs a 1 to be shifted into b7 when the right shift is
performed. However, this is not the whole answer because alwaysshiftinga 1
into b7 would give the wrong result when the number was positive. The
correct solution is to perform the right shift in such a way that b7 keeps its
value. This is the essence of an ASR (Arithmetic Shift Right) operation. The
ASR operation is available in the usual three forms -
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ASRA
ASRB

and
ASR ’address’

which perform the ASR operation on the A register, the B register and the
contents of the memory location at ‘address’ respectively. The ASR
operation is can be thought of as -

-->- b7 b6 b5 b4 b3 b2 b1 b0 ->- C
|

[ |
.
in other words, all the bits move one place to the right, b0 is stored in the C bit
and b7 retains its current value.

Fortunately, there are no complications with the application of LSL to
two’s complement numbers but it is usual to allow the mnemonic ASL to be
used to mean the same thing as LSL to make neat pairs of arithmetic shifts. In
other words, shifting a two’s complement number to the left one place and
shifting a 0 into b0 (as in LSL) is the same as multiplying the number by 2.
However, if multiplying the number by 2 would take it outside the range that
can be represented then, just as with addition and subtraction, you will getan
overflow (i.e. the wrong answer). For example, if the A register contains $20
or

b7 b6 b5 b4 b3 b2 bl b0
o 0 1 0O 0 0 0 O

then following a ASLA instruction the A register contains -
01000000

or $40 which is twice $20. However, following a second ASLA the A register
contains -

10000000
or $80 which is the two’s complement representation for -128 which is
definitely not twice $40 ( + 64 in decimal).
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You may be wondering what all the fuss about multiplying and dividing by
two is. The answer is that you can often multiply by small constants using
nothing but shifts and adds. For example, to multiply the contents of a
memory location by 5 you could multiply by 2 twice and then add the original
number to the result i.e. if a is the number 5a=4a+a. Converting this to a
program (assuming that the memory location to be multiplied is at $7F00)
gives -

LDAS$7FO0
ASLA

ASLA
ADDA$7F00
STA$7F00

This program will multiply the contents of $7F00 but it is hardly complete in
the sense that it makes no checks for an invalid result due to overflow: to do
this would need instructions introduced in the next chapter!

For the general multiplication of two simple binary numbers the 6809
provides the MUL instruction. The MUL instruction multiplies the two simple
binary numbers in the A and B registers and leaves the resultin the D register.
As the largest result that this can produce is $FFFF there is no chance of any
sort of overflow and there is nothing that can go wrong when using the MUL
instruction. Forexample, if the A register contains $0A (10 in decimal) and the
B register contains $52 (82 in decimal) then following a MUL instruction the D
register contains $0334 (820 in decimal). Notice thatthe MUL instructionwill
only give the correct answer if the two numbers to be multiplied together are
in simple binary. In other words you can only directly multiply together
positive numbers using MUL.

Binary Coded decimal - the DAA instruction

This sectionintroduces a third method of representing numbers using bit
patterns, ‘Binary Coded Decimal’ or ‘BCD’. This representation is useful for
doing smallamounts of arithmetic on numbers that have been typed in froma
keyboard and in situations where it is important that the 6809 does its
arithmetic, for reasons of accuracy, in the same way that it would be done
with pencil and paper,
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The basic idea behind the BCD representation of a number is that using
four bits you can represent the decimal digits 0 to 9 (using simple binary).
Using this idea a number such as 2389 can be written as

2 3 8 9
001000111000 1001

I other words each digit of the number is coded separately in binary as a
group of four bits. This means that a single eight-bit memory location can be
ised to store a BCD number in the range 0 to 99 which should be compared to
the range of a simple eight-bit binary number i.e. 0 to 256. P It should be
obvious thatyou cannotadd two BCD numbers and get the correctanswerin
BCD using the standard ADD instruction. To make BCD arithmetic easier the
6809 provides that DAA (Decimal Adjust A) instruction. This instruction is a
little different from all the other instructions that we have looked at so far in
that it does nothing useful when used on its own. To be of any use the DAA
instruction has to used in conjunction with the ADD instruction. Indeed it is
probablybetter to think of the pair of instructions -

ADDAaddress

DAA
as a BCD ADD instruction. The DAA instruction corrects the result of an
ADDA instruction so that the correct BCD result is leftin A. Notice that the
DAA will only correct the result of addition in the A register. Thus the DAA
instruction is one instruction that makes the A and Bregistersdifferent. Asan
example of BCD arithmetic consider adding decimal 12 to decimal 9. The
BCD representation of 12 is -

112
0001]0010

or $12. The BCD representation of 9 is -

0000|1001
or $0A. Adding them together using the ADD instruction e.g.

LDA $3$12
ADDA #3$0A
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gives the result $1C which is not the correct answer in BCD. However,
following a

DAA

instruction the A register contains $2 1 or
2 1
00100001
whichis thecorrect BCD result.

For completeness it is worth mentioning that you can write programs to
add more than two BCD digits using the ADC instruction (to be introduced in
Chapter Eight) to take account of the C bit. The DAA instruction adjusts not
only the result but also produces a correct value for the carry in BCD
arithmetic.

Adding shifts, DAA and SEX to the BASIC assembler.

None of the instructions introduced in the second half of this chapter
require any modification to the BASIC assembler other than the addition of
the appropriate DATA statements -

58 DATA SEX,-1,-1,-1,-1,&H1D

59 DATA ASRA,-1,-1,-1,-1,&H47

60 DATA ASRB,-1,-1,-1,-1,&H57

61 DATA ASR,-1,&H07,&H67,&H77,-1
62 DATA ASLA,-1,-1,-1,-1,&H48

63 DATAASLB,-1,-1,-1,-1,&H58

64 DATAASL,-1,&H08,&H68,&H78,-1
65 DATA MUL,-1,-1,-1,-1,&H3D

66 DATA DAA,-1,-1,-1,-1,&H19

Summary
1) There are three common ways of usingbit patterns to represent
numbers -
i) simple binary - for positive numbers
it two’s complement - for negative and positive numbers
iii) BCD - for doing decimal-like arithmetic
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2) The range that can be represented by simple binary is -

for eight bitsO to 255 - represented by $00 to $FF for 16 bits0 to 65535 -
represented by $0000 to $FFFF .FI .INO .IN5

3) The range that can be represented by two’s complement is-

for eight bits -128..0.. + 127 - represented by $FF..$00...$7F for 16
bits -32768..0.. + 32767- represented by $FFFF..$0000. .$7FFF

4) A single memory location can hold two BCD digits giving a range
of 0 to 99.

5) Arithmetic on binary numbers, both simple and two’s
complement, can be carried out on eight-bit values using ADD, SUB
and NEG. Multiplication on simple eight-bit values can be carried out
using MUL and the arithmetic shift instructions can be used to
multiply and divide two’s complement numbers by two.

6) Sixteen bit arithmetic can be achieved using the D register and
LDD, STD, ADDD and SUBD for both simple and two’s complement
binary numbers. Eight-bit two’s complement values can be converted
into 16-bit two’s complement values by the use of the SEX
instruction.

7) Finally BCD addition can be carried out two digits at a time using
the instruction pair ADDA, DAA.

Micro projects

1) Write a short program that will add together a pair of eight-bit
simple binary numbers. Assume that the first number is stored in
@DATAT1, the second in @DATA2 and that the result has to be
stored in @ANS. Would your program be capable of adding together
200 and 50?

2) Make any modifications that are necessary to the program in
question 1 so that it can add together a pair of two’s complement
numbers. Would your program be capable of adding together 105
and -15?
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3) Write a short program that will multiply an eight-bit two's
complement number by 9. (Hint: you cannot use the MUL instruction
on two’s complement numbers!)

4) Write a short program to subtract a 16-bit number from an
eight-bit number assuming that both are two’s complement
representations. Assume that the first number is stored in a pair of
memory locations the first of which is labelled @BIG and the second
is stored in a single memory location labelled @LITTLE. How many
memory locations will you need to store the answer if you do nothing
more to it after the subtraction?
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Branch Instructions

This chapter introduces the assembly language equivalent of the [F..THEN
GOTO instruction of BASIC, However, instead of asingle instruction thatcan
causea jump as a result of arange of different conditions, as with the BASIC
IF, assembler uses a range of instructions each one causing a jump in
response to a different condition. This range of instructions is collectively
referred to as the ‘branch’ group or the ‘conditional branches’. Once you
know how to use the conditional branches the way is clear to use the
assembly language equivalents of IF statements, conditional loops and FOR
loops.

As these program forms are so important, you may be wondering why they
have been left so until such a late chapter for discussion. The reason is that all
the conditional branches make use of another register in the 6809 - the CC or
‘Condition Code’ register - that records certain facts about the result of the
last operation. This is simple enough. The complicationis that these factsare
always recorded but whether they make any sense or notdepends on what
you are using the bit patterns to represent. For example, the CC register
records whether or not the last result was negative or positive but this
information is only meaningful if you are working with two’s complement
numbers. For this reason, a consideration of the conditional branches have
been left until you have made the acquaintance of not only simple binary but
two’s complementand BCD representationsas well. It is possible to use the
branch instructions without worrying about the subtleties of what the bit
pattern is representing but sooner or later such an approach will lead you to
make a programming error that you have little chance of finding! The branch
group of instructions are best treated as a special group by the BASIC
assembler because they all use a new addressing mode, 'relative addressing’,
which is also described in this chapter.
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Unconditional branches and relative addressing.

The6809 hastwo instruction BRA (BRAnch) and LBRA {Long BRanch)
that seem to do the same job as the JMP instruction in that they both transfer
control to an instruction at a specified address. However, the way that the
address is specified in a BRA or LBRA instruction is different and has certain
advantages over the addressing modes that can be used with the JMP
instruction. The addressing mode used with the BRA and LBRA instructions
is known as 'relative addressing’. The form of the BRA instruction is -

BRA offset

where ‘offset’ is an eight-bit two’s complement binary number. As the
machine code for BRA is $20 and the offset is eight bits the whole BRA
instruction can be stored in just two memory locations. As already
mentioned, the BRA instruction behaves like the JMP instruction in that it
transfers control to the machine code instruction at a particular address, The
only question that remains to be answered is how the offset determines the
destination address (i.e. the address that control will be transferred to). Thisit
does in a very clever way by giving how far away, in terms of memory
locations, the destination address is. To be more exact the offset specifies the
number of memory locations the destination address is away from the
location of the next instruction to be carried out (see fig 7.1). The reason for
this use of the start of the next instruction as the position that the distance to
the destination address is measured from is a result of the way that the 6809
works. If you recall, the PC or Program Counter always points at the address
of the next instruction that will be obeyed. While the BRA instruction isin the
process of being carried out the PC register is pointing at the first memory
location of the next instruction and all that the BRA instruction does is to add
theoffsettothisvalue of the PC register (see fig 7.1). Ifthe addressof the start
of the BRA instruction itself is M then tie destination address can be
anywhere in memory from -

M+2-128 uptoM+2 +127

As M +2 is the start of the nextinstruction and the range of an eight-bit two’s
complementnumberis-128to + 127. Thus you cannottransfer control to any
memory location using the BRA instruction. You might think that only being
able to reach memory locations roughly 100 locations higher and lower than
the position of the BRA instruction would be so restricting that the JMP
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instruction would always be preferred. This is not the case because, in
practice, many of the destinations of jumps withina program are less than 100
memory locationsawayand the BRA instruction takes less memory to store
and is slightly faster than the equivalent JMP instruction. These
considerations of efficiency are, however, only a small part of the reason for
using the BRA instruction. If you JMP to a location within a program then,
when it is assembled, the address of the destination is built into the machine
code. This is fine as long as the program is stored in the position in memory
that it was assembled to occupy. However, as the destination of a BRA
instruction is assembled into the program as an offset from the current
address that the BRA instruction occupies, the BRA will work no matter
where the program is loaded into memory. For example, if a BRA instruction
transfers control to an instruction 10 memory locations away then the
instruction will be 10 memory locations away no matter where the whole
program is loaded in memory. If the program uses nothing but relative
addressing then it can be loaded and run correctly anywhere in memory- that
is it is ‘position independent’. Position Independent Code (PIC) is a fairly
advanced topicanditis bestleft until you have gainedplenty of standard 6809
programming experience. Itis, however, worth commenting on the fact that
the 6809 can produce completely positionindependent code.

The position independence property of relative addressing is so useful that
the 6809 has a second unconditional branch instruction, LBRA (Long
BRAnNch), which uses a 16-bit two’s complement offset, allowing the
destination address to be anywhere in memory. The format of the LBRA
instruction is -

LBRA offset

where the machine code for LBRA is $ 16 and the offset occupies two memory
locations in the standard two’s complement format. Once again, the
destination address is obtained by adding the offset to the address of the next
instruction. The only difference is that the LBRA instruction takes up three
memory locations and the offset is a 16-bit two’s complement number. This
makes the addressing range of the LBRA instruction

M +3-32768 up to M+ 3 + 32767

where M is the address of the start of the LBRA instruction.
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Relative addressing and the BASIC assembler

Relative addressing is an addressing mode unique to the branch group of
instructions For this reason, it makessense to deal with it and the branches
separately from the rest of the 6809 instructions and addressing modes. The
easiest and most efficient way of duing this is to change subroutine 4000 to
check for a mnemonic starting with B or LB. With one exception, the
instruction BIT, any mnemonic that starts with B is a member of the branch
group and any instruction starting with LB is a long branch. The machine
codes for the branch group are kept as a separate list of DATA statements
starting at 400. This list can be simpler than the list used for other machine
code instructions because the branch instructions either use eight-bit or
16-bit relative addressing. The format of each 'branch’ data statement can
therefore be -

DATA mnemonic, code for eight-bit relative, code for 16 -bit relative

and this has the added advantage of being very similar to the format of the
branch tablein Appendix I. Once a branch instruction hasbeen detected then
all that has to be done is to read through the table of other instructions until
the ZZZ that marks the end is encountered and then search though the branch
table, remembering to use the new format for the DATA statements.

1 REM BASIC ASSEMBLER V7.1

400 DATA BRA,&H20,&H16
499 DATA 22Z,-1,-1

4009 IF (LEFT$(M$,1)="B” AND LEFT$(M$,3)<>"BIT") OR
LEFT$(M$,2) ="LB” THEN GOT04500

4500 READC$

4510 FORK =1TO5:READC(K):NEXTK

4520 IFC$< > "Z2Z" THENGOT04500

4530 IF LEFT$(M$, 1) = “L” THEN M$= RIGHT$(M$,3):BR =2 ELSE
BR=1

4535 TYPE=BR

4540 READCS

4550 FORK =1T02:READC(K):NEXTK

4560 IFC$="2Z2"THENI=1+1:ER=1:RETURN
4570 IFC$ =M$THENRETURN

4580 GOTO4540
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Lines 400 and 499 are the only DATA statements in the branch list so far (499
marks the end of the list with ZZ2). Line4 009 detects the the mnemonic is one
of the branch group and passes control to the routine at 4500 to 4580. This
routine first skips over the rest of the instruction table and then reads the
branch table to find the matching mnemonic. Line 4530 test to see if the
instruction is a branch or a long branch. If it is a long branch then the L is
removed from the front of the mnemonic and BR is set to 2. If it is a normal
branch then BRis setto 1. The variable TYPE isthen set to the same value as
BR, because once the matching mnemonic in thetableisfoundthe codefora
branch will be in C(1) and for a long branch in C(2). It should be noticed that
this doesn’t imply any connection between relative addressing and address
modes corresponding to TYPE= 1 and TYPE =2 (immediate and direct) it is
simply a programming convenience.

The problem of detecting branch instructions and finding the correct
machine code is fairly easy but what about handling relative addressing? In
machine code the destination address is specified as an offset from the
address of the next instruction but is there any need to inflict this difficult
calculation on the assembly language programmer? The answer is clearly no!
The assembler should allow the programmer to specify addresses in the usual
way either by writing the actual address or by using a label, and then it should
produce the correct machine code by calculating the necessary offset. This
means that instructions like -

BRA @LOOP
LBRA $BF00

are perfectly correct assembly language. To a certain extent, this normal use
of addresses hides the fact that BRA and LBRA are using relative addressing.
However, you will soon be reminded of the fact if, for example, @LOOP is too
far away to be reached by an eight-bit offset!

The modificationto the BASIC assembler has to convert the address value
in A to a relative address if the instruction is a branch. Detecting that the
address field belongs to a branch instruction is simply a matter of testing the
variable BR for a value greater than 0 (BR=1 is a branch, BR =2 is a long
branch). Converting the address torelative form is a little more complicated.
If the branchis totransfercontrol to the addressstoredin A and the address at
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which the branch instruction will be stored is in P, then the offset can be
calculated using -

OF =A-2-P
for a branch and

OF =A-3-P
for along branch.

Recalling that the value of BR for branches and long branches is 1 and 2
respectively, you should be able to see that the offset is equal to -

OF = A-BR-1-P

in both cases. If the offset turns out to be positive then there is nohing else to
be done apart from POKEing 1 memory location for an eight bit relative
address and 2 memory locations for a 16-bit relative address. If the offset is
negative then it has to be converted to the correct two’s complement form
before being POKEd into memory. For an eight-bit relative address this can be
done by -

256-OF
and for a 16-bit relative address by
65536-0OF
Putting all this together gives the following modification
5024 IF BR>0 THEN GOTO 5700
5700 IF PASS =1 THEN A=0:RETURN
5705 OF= A-BR-1-P
5710 IF BR=1 AND (OF<-128 OR OF> 127) THEN
ER=4:t=1+1:G0T0O9000
5720 IF OF> =0 THEN A= OF:RETURN

5730 IF BR=2 THEN GOTO 5760
5740 A =256-OF
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5750 RETURN
5760 A=65536-OF
65770 RETURN

6021 IFBR=2 THEN TYPE=4
6060 TYPE=0:BR=0

Line 5024 detects a branch instruction and hence a relative address and
transfers controltoa new routine at5700. This calculates the offset, including
conversionto two’s complement if necessary, as described earlier. Line5710
checks that an eight-bit relative address is in the correct range.

Conditional branches - the Condition Code register

The BRA and LBRA instructions always transfer control to their
destination addresses - in this sense they form another two assembly
language equivalents of the BASIC GOTO instruction. The conditional
branches are similar to the BRA and LBRA instruction in that they use the
same addressing modes - eight-bit and 16-bit relative addressing -
respectively - but they do not always transfer control to their destination
addresses. In this sense the conditional branches form the assembly
language equivalent of the BASIC IF condition THEN GOTO xxx. However,
in this particular case the range of conditions that can be tested is very
restricted. Also, whether or not the branch is taken depends on the result of a
previous operation rather than any calculation built into the branch
instruction itself. For example, the BEQ (Branch EQual) instruction will
transfer control toits destinationaddress if the result of the last operation was
zero. So if an addition or subtraction instruction is followed by a BEQit s the
result of this prior arithmetic which is tested to see if it was 0 to decide
whether or not the branch is taken.

This idea of looking back at the result of the last operation to decide the
outcome of a branch instruction is perhaps easier to appreciate once you
know how it works. The CC or Condition Code register has already been
mentioned in earlier chapters as the place where the C or Carry bitis stored. In
factitis an eight bit register in which each of the bits has a special name and a
special function. For example, one of the bitsin the CC register, b2, is called
the Z or Zero bit and this is set to 1 if the result of the last operation was zero
and a 0 otherwise. Notice that the Z bit, like the C bit, is changed by the
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previous operations even if it is not going to be used in anyway later on. In this
sense the CC register really does monitor the ‘condition” of the 6809 by
continually recording information about previous results.

Not all of the eight condition bits within the CC register are of interest to us
at this stage. Of the eight bits only five are concerned with the outcomes of
operations on data and so only these five are described below:

The Condition Code Register

b7 b6 b5 b4 b3 b2 bl bo
. . H . N 2 Vv C

where .’ indicates that the purpose of the bit will be described in Chapter Ten.

The H bit

The H or Half carry bitis used by the DAA instruction to do BCD arithmetic.
(See Chapter Six). Normally this bit isn’t of any direct interest or use to the
assembly language programmer. The best policy is to accept that the DAA
instruction uses it and then forget about it.

The N bit

The N or Negative bit is always equal to b7 of the last result. Obviously if
you are working with simple binary numbers all that the N bit will indicate is
whether or not the last result was equal to or bigger than $80 and this is not
very useful. However, if you are working with two’s complement numbers,
b7 is 1 if the number is negative and O if it is positive. Thus for two’s
complement numbers the N bit indicates whether or not the last result was
negative or not.

The Z bit

The Z or Zero bit has already been discussed briefly. It is 1 if the previous
result was zero and 0 otherwise.
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The V bit

The V or oVerflow bit is the most complicated of all the condition code bits.
It is 1 if the last operation caused a two’s complement overflow and 0
otherwise. Of course if you are not using the two’'s complement
representation then the V bit’s value makes no sense at all!

The C bit

The C or Carry bit has already been described in Chapters Five and Six in
connection withthelogical and arithmeticshiftoperations. Its most common
use is as a carry or borrow in multiple precision arithmetic and this is explained
fully in Chapter Eight. However, it is also used to test for overflow in simple
binary arithmetic and as a way of discovering the value of the bit shifted out as
aresult of a shiftinstruction. In its role as a carry bit used to detect overflow it
is best thought of asa ninth bit produced as a result of an eight-bit addition or
subtraction. You should be able to see that following simple eight-bit binary
arithmetic the C bit should be 0 if the result can be represented in eight bits. In
the same way it can be thought of as a 17th bit as a result of 16-bit addition or
subtraction. Once again if the result can be correctly represented in 16 bits
there should be no carry and the C bit should be 0.

Notice that the four condition code bits N, Z, V and C that are used by the
conditional branches fall into two groups. The N and Z bits both reflect a
property of a single number or bit pattern - i.e. is it negative or zero
respectively. However, the V and C bits reflect an aspect of the result of an
operation - i.e that an overflow or a carry occurred. For this and various other
reasons, not every instruction changes all, or even any, of the condition
codes. Itis obviously very important to know which of the condition code bits
any given instruction will change but to list each one here would take too
much space. A complete list of which bits each instruction affects is given as
part of Appendix | and this should be used for reference. Fortunately, it is
usually easy to work out which instructions do and do not change the
condition codes. For example, instructions which load registers set the N and
Z bits so that tests can be made on the value loaded. The C bit is left unaltered
(it is difficult to see how a ‘carry’ can arise when you are not doing any
arithmetic!) and the V bit is zeroed because no overflow has occurred.
However, until you are familiar with 6809 assembler the best policy is to look
up in Appendix | which condition codes are affected by the instructions prior
to making use of the condition codes.
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Setting the condition codes directly - ANDCC and ORCC.

The condition code bits areused by the conditional branch instructions to
determine whether or notthe branch should be taken. Before discussing the
details of each conditional branch instruction it is worth examining ways of
intentionally setting the condition code bits.

There are two instructions that allow the assembly language programmer
to alter the condition code register directly - ANDCC and ORCC. Both
instructions can only be used with immediate addressing and the action of -

ANDCC #data

isto form the AND of the current contents of the CC register and the eight bit
value ‘data’ leaving the result in the CC register. The action of

ORCC #data

is to form the OR or the current contents of the CC register and the eight bit
value ‘data’ leaving the resultin the CC register. If you followed the discussion
of bit manipulation in Chapter Five you will realise that ANDCC and ORCC
allow you to set any bitin the CC register to either 0 or 1 without affecting the
current state of any of the other bits. For example, if you want to set the C bit
to zero (sometimes referred to as ‘clearing the carry’) then use-

ANDCC #$FE
If youwantto set the C bit to 1 then use -
ORCC #$01

Although you can change any of the bits in the CC register in practiceitis only
the C bit thatis ever changed directly in this way. Generally before any ROL or
ROR instruction the C bit should be initialised to either 0 or 1 as appropriate.
(This is also the case when using multiple precision arithmetic with the ADC
and SBC instructions to be explained in Chapter Eight.}
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The simple conditional branches

The conditional branches are best thought of as being made up of three
different groups:

he simple conditional branches that each test a single condition code
bit.

The signed conditional branch instructions that are used with two's
complement numbers.

The unsigned conditional branches that are used with simple binary
numbers.

In this section the simple conditional branch instructions will be described.

As the simple conditional branch instruction each testoneof N, Z, Vand C
in the condition code register you might expect that there would be exactly
four such instructions. In fact there are eight simple condition branches
because each condition code bit is associated with a pair of branches - one
thatis taken if the bitis 0 and one that is taken if the bitis 1. The complete set
of simple branch instructions is -

bit branch taken if 0 branch taken if 1

N BPL - Branch PLus  BMI - Branch Minus

z BNE - Branch Not  BEQ-Branch EQual
Equal

\% BVC - Branch V BVS-BranchV Set
Clear

C BCC - Branch C BCS- Branch C Set
Clear

Each of these instructions can only be used with eight-bitrelative addressing.
If the destination address is outside the range of eight-bitrelative addressing
then each of the simple branch instructions is available in a long branch form,
e.g. BPL is also available as LBPL (Long Branch Positive).

The way that each of the above simple conditional branches behaves is
easy enough to understand. What is not so clear is that way that each one
might be used as part of a program. Itis perhaps worth dealing with each pair
inturn.
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BPL and BMI - telling positive from negative

As already described the N bitisequalto b7 of the last result that affected the
condition codes. Testing the state of this bit can be used to tell the difference
between a two’s complement positive or negative result. In the following
example,

LDA 505
SUBA #508
BMI @MINUS

the branch to @MINUS will be taken because the result of the subtraction is
negative. Notice that as far as BPL and BMI are concerned 0 is a positive
number. Of course, there is nothing stopping you from using BPL and BMI
when the numbers involved in the arithmetic are simple binary. However, the
interpretation of the branch as a test for positive and negative numbers then
becomes a nonsense. There is one problem that can occur with the use of
BPL and BMI. If during the course of a two’s complement calculation the
result becomesinvaliddue to an overflow, the BM| or BPL will still be selected
according to the value of b7 of the result but this result may not be what you
expect it to be. In other words, it is possible to take a correct branch from an
incorrect answer! For example, consider -

LDA #$7F
ADDA #$2
BPL@PLUS

$7Fis the two’s complement representation of 127. Adding $2 to thisshould
give the result 129 and so the BPL should transfer control to @PLUS.
However, 129 is outside the positive range of an eight-bit two’s complement
number and so the result is actually $81 which is the two’s complement
representation of -128 and the branch to @PLUS is therefore not taken and
control passes to whatever instruction follows the BPL. This problem of
branching or not branching on an invalid result is a problem to be foundin
other branch instructions.

BEQ and BNE - testing for zero

There are no complications in using the BEQ and BNE instructions. If the
result of the last operation was zero then a BEQ branch will be taken. If the
result was anything else other than zero then the BNE branch will be taken.
The interesting and useful thingabout the BNE and BEQ pairis that thereis no
need to worry about number representation. Perhaps the best way to
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understand this is that a BEQ will be taken if all eight bits of the results bit
pattern are 0. This all O pattern can arise ina number of ways. For example, if
the bit patterns are being used as two’s complement numbers then -

LDA #$10
SUB #$10
BEQ@ZERO

The result of the SUB instruction is $0 and so the BEQ transfers control to
@ZERO. A less obvious example is -

LDA #$F0
ANDA #$0F
BEQ @ZERO

The result of ANDing $F0 with $0F is $00 and so the branch to @ZERO is
taken.

BVC and BVS - testing for overflow

Theinstructions BVC and BVS test whether or not the last operation resulted
in atwo’s complement overflow. The V bitis so specialised that there is really
only one use for the BVC and BVS instructions and that is to test for a valid
result at the end of any two’s complementarithmetic. For example,

LDA #$7F
ADDA #$02
BVS @ERROR

resultsincontrolbeing transferred to @ERROR as, in two’s complement, $7F
is 127 and adding 2 takes the result outside the valid range so overflow occurs
and the V bit is set. You can use BVS and BVC in this way to call or skip an
error handling routine. The problem of detecting overflow in multiple
precision arithmetic (see Chapter Eight) is easily solved by testing for
overflow after the last addition or subtraction.

BCC and BCS - testing for simple binary overflow

BCC and BCS are used following simple binary arithmetic in much the same
way that BVC and BVS are following two’s complement arithmetic. In other
words following simple binary arithmetic there should be no carry if the result
is valid. For example,
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LDA #$FE
ADDA #502
BCS @ERROR

resultsin the branch to @ERROR being taken because $FE added to $02 gives
the result $01 and a carry. There are other uses for BCC and BCS apart from
detecting simple binary overflow. By using LSL and LSR instructions it is
possible to shift any bit into the C bit and then use the BCS and BCC
instruction to take a branch depending on whether the bit was 0 or 1. By
detecting simple binary overflow following a subtract instruction it is possible
to tell that the value in the register was less than the value in the memory - but
more of this later.

The signed conditional branches

The signed conditional branches are concerned with comparing the
relative magnitudes of 2 two's complement numbers. In this sense they come
closest to the BASIC conditional tests<, >, < = and> =. Indeed thereisa
signed conditional branch for each of these relations and, if BEQ and BNE are
included, for = and <> as well. The signed conditional branches are -

test  branch if true branch if false

™m  BGT-Branch BLE-Branch less than orequal
Greater Than

r> =m BGE-Branch BLT-Branch Less Than
Greater than or
Equal

r=m BEQ-Branch Equal BNE-Branch Not Equal

where the branches are to be used following a subtract instruction, r is the
contentsof the register and m the contents of the memory. The relationships
in the first column are to be interpreted as two’s complement relationships.
That s, in eight-bit two’s complement representation $80 is less than $7F as
$80 is-128 and $7F is +127. Consider, for example -

LDA #$50

SUBA #$24
BGT @BIGGER
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The branch to @BIGGER is taken because $50 is greater than $24. (In this
caser, the valuein the register, is$50 and m, the value in the memory, is$24.)
Thisis all there is to using the signed conditional branches.

\f yousubtracttwo numbers, one stored ina registerand oneinmemory {or
immediate data) then you can use any of the above branch instructions as
long as you remember to interpret the numbers as two’s complement
numbers. You might think that two’s complement overflow might be a
problem with the signed conditional branches. In other words, do the signed
branches work when a two’s complement subtraction results in an invalid
result? The surprising answer is that they do! Even when the result of the
subtractionisinvalid, i.e. a BVS is taken indicating an overflow, the signed
conditional branches still work correctly. The reason for thisis that the signed
conditional branches can deduce the sign that the correct result would have
had if it could have been worked out correctly! Consider, for example-

LDA #$80
SUBA #$01
BLE @SMALL

Inthiscasetheresultofthe subtraction should be -129 (because $80is-128in
two’s complement and subtracting 1 gives -129). However, because -129 is
outside the range of representation of eight-bit two’s complementarithmetic,
the result is actually $7F or +127 which is incorrect {and the V bit is 1 to
indicate overflow)butthebranchto @SMALLis correctly (- 128 islessthan 1)
taken. Itisworth remembering that (and trying to understand why) the signed
conditional branches will work even if the result of the subtract is invalid.

The unsigned conditional branches

The unsigned conditional branches are the simple binary equivalents of the
signed conditional branches. In other words they can be used to comparetwo
simple binary values. The unsigned conditional branches are -
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test branch if true branch if false

r>m  BHI-Branch Higher BLS-Branch Lower or Same

r> =m BHS-Branch
Higheror Same BLO-BranchLOwer
r=m  BEQ-Branch EQual BNE-Branch Not Equal

Once again the branch instruction have to follow a subtract operation, ris the
numbers stored in the register and m is the number stored in the memory
location {or immediate data), for example -

LDA #$80
SUBA #$7F
BHI @HIGHER

Insimplebinary$80is 128 and $7F is 127 so theresultis 1 and the contents of
the register are larger or higher than the memory location and hence the
branch to @HIGHER is taken. In the same way that the signed conditional
branches will branch correctly on an invalid resuit so will the unsigned
conditional branches. Consider, for example -

LDA #$7F
SUBA #$80
BLO @LOWER

The result of 127 minus 128 is -1 and this cannot be represented in simple
binary {no negative number can be represented in simple binary!) but even
though the result is incorrect ($FF) the branch to @LOWER is still correctly
taken.

It is worth pointing out that BLO is identical to the BCS instruction and the
BHS instruction is identical to the BCC instruction. The additional
mnemonics BLO and BHS are used mainly for convenience and to distinguish
the uses of the BCS and BCC instruction that are concerned with testing the
value of bitshifted into the carryduringlogicalshifts etcand applications of the C
bit that involve arithmetic. It is important not to confuse the signed and
unsigned conditional branches. If you are using two’'s complement
representation, i.e. if you are using negative numbers, then use the signed
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conditional branches. If you are not using negative numbers then you are free
to choose a simple binary representation and the unsigned conditional
branches.

Adding conditional branches to the BASIC assembler

Adding the conditional branches to the BASIC assembler is a matter of
adding the appropriate DAT A statements to the separate branch list starting
at-400. It seems worth also adding the DATA statements for the instructions
that will be describedin the rest of the chapterat this point to avoid generating
too many versions of the BASIC assembler.

1 REM BASIC ASSEMBLER V7.2

67 DATA CMPA,&H81,&H91,&HA1,&HB1,-1

68 DATACMPB,&HC1,&HD1,&HE1,&HF1,-1

69 DATA CMPD,&H1083,&H1093,&H10A3,&H10B3,-1
70 DATA BITA,&H85,&H35,&HAL,&HBS5, -1

71 DATA BITB,&HC5,&HD5,&HES5,&HF5,-1

72 DATA ANDCC,&H1C,-1,-1,-1,-1

73 DATA ORCC,&H1A,-1,-1,-1,-1

74 DATATSTA,-1,-1,-1,-1,&H4D

75 DATATSTB,-1,-1,-1,-1,&H5D

76 DATATST,-1,&HOD,&H6D,&H7D, -1

401 DATA BCC,&H24,&6H1024
402 DATA BCS,&H25,&H1025
403 DATA BEQ,&H27,&H1027
404 DATA BGE,&H2C,&H102C
405 DATABGT,&H2E,&H102E
406 DATA BHI,&H22,&H1022

407 DATA BHS,&H24,&H1024
408 DATA BLE,&H2F,&H102F
409 DATA BLO,&H25,&H1025
410 DATA BLS,&H23,&H1023
411 DATABLT,&H2D,&H102D
412 DATABMI,&H2B,&H102B8
413 DATA BNE,&H26,&H1026
414 DATA BPL,&H2A,&H102A
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415 DATA BSR,&H8D,&H17
416 DATA BVC,&H28,&6H1028
417 DATA BVS,&H29,&H 1029

The only other modification to be made to the assembler is to take account of
the fact that most of the long branch instructions use two memory locations
for their machine code. This use of two memory locations to code an
instructionis away of getting round the limitation of a single memory location
only being able to code 256 differentinstructions. The 6809 uses two codes
$10 and $11 as special markers to indicate that there is a second part to the
code stored in the next memory location. In other words there are two groups
of instructions that use two memory locations to store their code, a group
called ‘page two instructions’ that start $10 and a group called ‘page three
instructions’ thatbegin $1 1. Apartfromtaking up more memory and being a
little slower, instructions that need more than one memory location for their
code are only a problem to the assembler. However, this doublelength form
of the instruction can be dealt with in the BASIC assembler very easily -

6010 IF C(TYPE)< 2566 THEN POKE P,C(TYPE)
6011 IF C{TYPE)>255 THEN POKE P,INT(C(TYPE}/256): POKE
P +1,C(TYPE)-INT{C{TYPE)/256)*256 :P=P +1

Testing without changing - CMP, TST and BIT

The conditional branches do provide uswith a way of transferring control
to some partof a program depending on the result of comparing two numbers
inaway thatis not unlike the BASIC IF statement. However, to compare two
values it is necessary to subtract one from the other as shown in the many
examples above. This subtraction produces a result (i.e. the difference
between the two numbers!) thatmay not be required by the program. For
example, itmaybethatyouwant to use the BEQinstruction to test when the
A register is equal to a particular value. The obvious and direct way of doing
this would be -

SUBA #$10
BEQ @LOOP

where the contents of the A register are compared to $10 by having $10

subtractedand then a BEQtakesitsbranchif the result waszero. This method
works but it destroys the current value in the A register, replacing it by the
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result of the subtraction, and it might be that if A isn’t equal to $10 then the
current value is used by later parts of the program. One solution would be to
save the A register before the subtraction and re-load it with its old value after
the subtraction and the branch but this is a very inefficient way of comparing
two values.

The correct solution is to use the CMP instruction which will carry out the
subtraction and set the condition codes in exactly the same way as a SUB
command but will not save the result. In other words, following a CMPA
#$10 command the condition codes are set as if $10 had been subtracted
from the A register but the contents of the A register are leftunchanged. Now
the problem of comparing two numbersis completely solved and the previous
example can be written -

CMPA #$10
BEQ @LOOP

The branch will be taken if the A register is equal to $10 but the contents of the
A register remain unaltered no matter what happens.

The CMP instruction has another advantage over the SUB instruction in
that it is available as

CMPA address
CMPB address

CMPD address

The final form allows you to compare the contents of the D register (see
Chapter Six) with a 16-bit value and branch on the result. For example-

CMPD #$0172
BLT @LESS

willtake thebranch to @LES S if the contents of D are lessthan$0172in two's
complement representation.
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The problem of testing to see if a value is zero, positive or negative is so
common that there is a special instruction for just this purpose. The TST
instruction has exactly the same effect as a CMP to zero but it can be used to
test thevalue stored in a memory location directly. TST comesin three forms.
The first two are

TSTA

and
TSTB

which have the same effect (but take less memory) than

CMPA #0

CMPB %0
The third form
TST address

effectively subtracts zero from the memory location ataddress and sets the
condition code bits accordingly. TST can be used with direct and extended
addressing.

in the same way that the CMP operation performs a subtraction without
altering the contents of the register involved, the BIT {BIt Test) instruction
performs the AND operation with out changing the register. A typical
application of the BIT instruction is to discover when two bit patterns,
whatever they represent, are the same or not. For example, suppose you
wanted toknow if the value stored in the A registerhadb4 set to 1 irrespective
of the setting of the other bits. Then you could use -
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BITA §$10
BNE @SET

because the result of ANDing anything with $10 can only be non-zero if b4 is
set to 1 - try it! As with the CMP instruction, following BITA the contents of
the A register are unchanged. The BIT instruction has only two forms-

BITA address
and
BITB address
In other words, there is NO 16-bit BITD form.

Adding CMP and BIT to the BASIC assembler is simply a matter of adding
their DATA statements and this has already been donein V7.2 given above.

BSR and LBSR

There are two remaining unconditional branches to be described. To a
certain extent this is because they are not really needed unless you are trying
to write position independent programs (see earlier in this chapter). The BSR
(Branch to SubRoutine) instruction behaves exactly like the JSR instruction
in that it transfers control to a subroutine except that, like all the branches, it
uses relative addressing. If the subroutine is out of the range of eight-bit
relative addressing then you can use LBSR {Long Branch to SubRoutine)
which, using a 16 -bitoffset, can reach a subroutine anywhere in memory. Itis
good assembly language programming practice to use BSR and LBSR to
jump to subroutines within a program that you are writing but JSR to jump to
a subroutine external to your program - in the BASIC ROM say. The reason
for this is discussed more fully in the last chapter but, essentially, subroutines
within your program will move their location if you move your program and so
to produce position independent you should use relative addressing.
However, subroutines that are outside your program generally don’t move
when your program does and so relative addressing would be inappropriate
in this case. BSR and LBSR have already been added to the BASIC
assembler.
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Chapter 7 Branch Instructions
Thinking BASIC - IF, conditional loops and FOR loops

Most of the work in a BASIC program is done using IF statements,
conditional loops and FOR loops. Now that we know about the conditional
branches itis possible to see how these familiar statements can be madeupin
assembler.

The only form of the IF statement that has an easy translation into assembly
language is IF condition THEN GOTO where the ‘condition’ is a simple
relation between two values. For example, the BASIC -

100 IF ANS> CONST THEN GOTO 300
is similar to the assembler -

LDA @ANS
CMPA @CONST
BGT @SKIP

where @ANS and @CONST are memory locations holding thetwo values to
be compared and @SKIP labels an instruction further down the program.
Notice that as BGT has been used the assumption is that the two values are
two’s complementnumbers in the range-128 to +127. If boh values cannot
become negative then the positive range could be extended to + 255 but the
branch instruction would then have to be changed to BHI @SKIP. Once
again it is important to be clear what the bit patterns are being used to
represent.

The conditional loop in BASIC is simply a GOTO statement arranged to
form a loop and an IF statement to transfer control out of the loop when a
condition is satisfied. For example -

10 COUNT =0

20 COUNT=COUNT+10

30 IF COUNT=100 THEN GOTO 1000
40G0TO20

is a simple conditionalloop that adds 10 to COUNT untilitisequal to 100. The
assembly language equivalent of this would be -
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CLRA

@LOOP  ADDA #50A
CMPA 494
BEQ @FINISH
BRA @LOooP

Notice the way that the BRA instruction is used to form a loop in the same
way that a GOTO would bein BASIC. Also notice that as the BEQ instruction
works with any representation the form of the program remains the same
even if you are working with two’s complement numbers. In this case 100 is
outside the range of eight-bit two’s complement numbers so a simple binary
representation is used.

Following the conditional loop the assembly language equivalent of the
FOR loop is particularly easy. For example, the assembly language equivalent
of -

FORI=1TO 10

NEXT |

LDB #$01
@FOR1 ‘other

assembly

language’

INCB

CMPB #$0A

BLE@ FOR 1

This form of the assembly language FOR loop can be modified to include a
negative step by changing INCB to DECB and to allow for STEP sizes larger
than 1 by using ADDB #@STEP. For all its flexibility, however, the needs of
assembly language programming can often be met by somethinga lot simpler
than this. Very often all that is required is to repeat a section of program a
number of times. For example, suppose you wanted to shift the contents of
the A register to the left four times you could use -
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LDB #$04
@LOO0P  LSLA
DECB
BNE@LOOP

The way that this works is to load the B register with the number of times you
want to repeat the instruction inside the loop and then DECrement the B
register each time through. When the contents of the B register reach 0 the
BNE is not taken and the loop ends. Notice that using this method of counting
down to 0 there is no need to use a CMP instruction to discover when the loop
is at an end because the Z bit is automatically set by the DEC instruction.

There are so many ways of using conditional branches to construct
equivalents of BASIC statements that there isn't enough room to give a
complete list. In any case it is one of the features of assembly language
programming that exactly how something is best done depends very much
on the requirements of the rest of the program. In short, you should
understandassembly language well enough to make up your own equivalents
to fit in with the rest of your program.

Summary

1) The condition code register is used to record certain features of
the result of 6809 operations. Only four condition codebitsthatare
used by the conditional branches the N, V, Z and C bits. The
condition code bits can also be modified directly using the ANDCC
and ORCC instructions.

2) The relative addressing mode is used with the branch group of
instructions. Roughly speaking, a relative address specifies a memory
location in terms of how far away, in terms of number of memory
locationitis from the current position within the program.

3) The branch instructions come in two forms, the branches and the
long branches using eight and 16 -bit relative addressing respectively.
The conditional branches fallinto three groups -
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i) the simple branches that test a single bit in the CC register

ii) the signed conditional branches that work with two’s complement
numbers

iii) the unsigned conditional branches that work with simple binary
numbers

4) The CMP, TST and BIT instructions can be used to compare
numbers and bit patterns without storing any results and so without
modifying the contents of the registers. As well as the usual A and B
register form of the CMP instruction, there is a very useful 16 -bit
CMPD form. The TST instruction can be used to test for a zero,
positive or negative value stored in the A or B registers orin a
memory location.

Micro projects
1) Using ANDCC and ORCC set the Z bit to 1 and the C bitto 0.
2) Write a short program thatis the assembly language equivalent of
FORI1=10 TO 1 STEP -1
NEXT |
Use the B register as the index variable |.
3) Write a program that adds two simple binary numbers together
and calls the machine code subroutine @RESULT if the answer is
valid and @ERROR is not. You do not have to write the subroutines

@RESULT and@ERROR.

4) Change the program in (3) to add a pair of two’s complement
numbers.
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Using the Dragon from Assembler

Although there have been plenty of short examples of 6809 assembly
language programs throughout this book, this is the first chapter where the
examples are of any size or usefulness. To start the chapter a few simple
routines are developed showing how data can be manipulated using the
instructions introduced in the last few chapters. The largest example in this
chapter is a simple video game. The reason for choosing a video gameis that it
is easy to understand the objectives of the program and easy to see if they
have been met. Also, moving an object around the screen provides an
excellent example of how careful you have to be in handling numbers and
doing arithmetic. All in all a video game makes an excellent example,
illustrating both the advantages and the difficulties of assembly language
programming!

However, before we can move on to the examples proper, something is
going to have to be done to make the BASIC assembler easier to use.
Althoughitis has been good enough to assemble the short program examples
given so far it is not really suitable for developing programs from scratch or
even for typing in examples longer than a few lines. It's not that the assembler
won'’t cope with the problems of assembling the programs, it’s just that it
provides none of the niceties of of any sort of editing, of saving and loading
assembly language programs on tape, or areasonably clear and useful listing.

Making the BASIC assembler friendly

Changing the BASIC assembler to include editing and other features to
make it easier to use is not difficult but it is the largest single change so far.
None of the methods used are in away new or difficult and rather than give a
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detailed explanation of the whole program, a table giving the purpose of each
subroutineis given at the end of the listing.

1 REM BASIC ASSEMBLER V8.1

5 CLEAR 2000,&H6FFF

590 |= T:GOSUB 1980
600 LC=0:GOTO 515

1000 DIM A$(150),C$(5),T$(50),T(50)
1980 PRINT “PRESS ANY KEY TO CONTINUE";
1990 IF INKEY$="" THEN GOTO 1990

2000 CLS

2010 PRINT@66,"BASICASSEMBLER"

2020 PRINT

2030 PRINTTAB(10); “SELECT ONE OF”

2040 PRINT

2050 PRINTTAB(8); "INPUT/EDIT......1"

2060 PRINTTAB(8); "ASSEMBLE........2"

2070 PRINTTAB(8); “SAVEONTAPE....3"

2080 PRINTTAB(8); “LOAD FROMTAPE..4"

2090 PRINTTAB(8); "EXECPROGRAM....5"

2100 INPUTACTION

2110 IFACTION< 1ORACTION>5THEN GOT02000
2120 ONACTION GOT02200,2800,2850,2920,2990

2200 CLS

2210 PRINT@76,"EDIT”

2220 PRINT

2230 PRINTTAB(10);"SELECT ONEOF”
2240 PRINT

2250 PRINTTAB(8);"LISTPROGRAM....1"
2260 PRINTTAB(8);"LISTTOPRINTER.2"
2270 PRINTTAB(8);"ADDTOPROGRAM..3"
2280 PRINTTAB(8);"DELETELINES....4"
2290 INPUTED
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2300 IFED< 1ORED>4THEN GOT02000
2310 ON EDGO0T02400,2400,2500,2700

2400 CLS

2405 IFI=0THENGOTO1980

2410 FORK=1TOIl

2420 IFED=1THEN PRINTK;”:"; TAB(4);A$(K) ELSE
PRIN T#-2,K;”:"; TAB(4);A$(K)

2430 NEXTK

2440 GOTO 1980

2500 IFI=0THENGOT02620

2505 INPUT”ADDLINESFOLLOWINGLINENUMBER";LN
2510 IFLN> =ITHENLN =1:GOT02620

2520 INPUT”NUMBEROFLINESTOINSERT”;IN
2530 IFI1+IN>150THENPRINT"TOOMANY”:GOT02000
2540 FORK =ITOLN + 1STEP-1

2550 AS(K +IN)=A$(K}

2560 NEXTK

2570 FORK=LN+1TOLN +IN

2580 PRINTK;”:"; TAB(4);

2590 LINEINPUTAS(K)

2600 NEXTK

2605 1=1+IN

2610 GOTO1980

2620 PRINT”TYPE END TO FINISH”

2630 K=1+1

2640 PRINTK;”:"; TAB{4);

2650 LINEINPUTLS

2660 IFLEFT$(L$,3) = “END*THENGOTO1980
2670 1=K:A$(l)=L$

2680 GOT02630

2700 INPUT”FIRST LINE TO DELETE";FL

2710 INPUT”LAST LINE TO DELETE";LL

2720 IFLL< FLTHENPRINT”NOT DELETED”:GOT0O1980
2730 FORK=LL+1TOI

2740 AS$(FL+K-LL-1}=A$(K)

2750 NEXTK
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2770 GOTO 1980
2760 |=I-(LL-FL+1):PRINT “DELETED”

2800 INPUT“SCREEN (0) ORPRINTER(1)”;PRT
2810 T=I

2820 PRT=PRT*2

2830 RETURN

2850 INPUT”FILE NAME”;F$

2860 PRINT”PRESSPLAY AND RECORD”
2870 PRINT“PRESSANY KEY WHEN READY"”
2880 IFINKEY$=""THENGOTO02880

2890 OPEN"O”, #-1,F$

2900 FORK=1TOI:PRINT #-1,A$(K)::NEXTK
2910 CLOSE #-1:GOT01980

2920 INPUT”FILENAME";F$

2930 PRINT“PRESSPLAY”

2940 OPEN“1", #-1,F$

2950 1=0

2960 IFEOF(-1) THEN CLOSE #-1:GOTO 1980
2970 1=1+1:INPUT#-1,A$(1)

2980 GOT0O2960

2990 CLS:EXEC &H7000
2995 GOTO 1980

6000 IFC{TYPE)=-1 THENERR=5:GOTO9000

6010 IFPASS =1THEN GOT06200

6020 PRINTH#-PRT,RIGHT$(" “+ HEX$(P),4);TAB(5);
6030 PRINT #-PRT,HEX$(C(TYPE)); TABI(8);

6040 IFTYPE< >5THENPRINT #-PRT, HEX$(A);

6050 PRINT #-PRT,TAB(15);A$(l)

6200 IFC{TYPE)< 256 THENPOKEP,C(TYPE)

6210 IF C{TYPE)>255 THEN POKE P,INT(C(TYPE)/256): POKE
P+1,C(TYPE)-INT(C(TYPE)/256)*256:P =P + 1

6220 P=P+1

6230 IFBR=2THENTYPE=4

6240 IFTYPE=1ANDRIGHT$(M$,1)="D"THENTYPE =4
6250 IFTYPE=5THENRETURN

6260 IFTYPE=20RTYPE=1THENPOKEP,A
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6270 IF TYPE=4 THEN POKE P,INT(A/256):P =P +1: POKE
P,A-INT(A/256)*256

6280 TYPE=0

6290 BR=0

6300 P=P+1

6310 RETURN

6500 IFPS< > 1THENGOTO06540

6510 IFPASS=1THENTILC)=A

6520 IFPASS=2THENPRINT #-PRT,TAB(15):A$(1)
6530 RETURN

6540 IFPS< >2THENGOTO6570

6545 IFPASS = 2THENPRINT4-PRT,HEX$(P);
6550 P=P+A

6560 IFPASS=2THENGOTO06520

6570 IFPS< >3THENGOTO6650

6580 A=A-INT(A/256)*256

6590 IFPASS =1THENGOTO06620

6600 PRINT#-PRT,HEXS(P); TAB(5); HEX$(A);
6610 PRINT #-PRT,TAB(15);A$(l)

6620 POKEP,A

6630 P=P+1

6640 RETURN

6650 IFPS< >4THENRETURN

6660 IFPASS =1THENGOTO6710

6670 LB=A-INT(A/256)*256

6680 HB=INT(A/256)

6690 PRINT#-PRT,HEX$(P); TAB(5);HEX$(HB); TAB(8);HEX$(LB);
6700 PRINT#-PRT, TAB(15):A$(1)

6705 POKEP,HB:POKEP+1,LB

6710 P=P+2

6720 RETURN

9000 PRINT #-PRT, “ERROR--";ER;”*** ATLINE”;|
9010 RETURN

routine purpose
1980-1990 pressany key tocontinueentry to 2000
2000-2120 main menu andselection
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2200 2310 editing menu and selection

2400-2440 list to screen or printer

2500-2680 add/insert lines to program

2700-2770 delete lines from program

2800-2830 assemble program

2850-2910 save to tape

2920-2980 load from tape

2990-2995 EXEC program

6000-6310 new version of subroutine 6000 to list assembly
6500-6720 new version of subroutine 6500 to list pseudoops
9000-9020 new version of error handler

Subroutine 6000 is almost completely new and it is better to delete the old
version and type the new one in from scratch. However, the only changes
tosubroutine 6500 are to the PRINT statements at 6520, 6545, 6600, 6610,
6690 and 6700 and soitis worth editing the old version.

The assembler’s new facilities mean that you can type in a program, list
it, insert and append new lines to it and delete incorrect lines from it. You
can also save and load programs to tape. As assembly language errors are
very often destructive it is a good idea always to save a program before
trying it out. Other features should be self-explanatory when you come to
use the assembler.

Printing hex numbers

The machine code subroutine @PRINT at $800C will print characters on
the Dragon’s text screen. The character printed is set by storing its ASCII
code in the A register before transferring control to the subroutine. It is
often useful, especially when debugging a program, to be able to print the
contents of the A or B register in hexadecimal form on the Dragon’s
screen. The problem is to convert the simple binary number in the B
register into two ASCII characters in the sets 0-9 and A-F. Thus, each of
the ASCII characters is determined by 4 bits, the first character to be
printed by bits b7-b4 and the second by b3-b0. What we have to do is to
write @ program to separate the two groups of 4 bits and then convert
them to the correct hex character.
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Theproblem of separating the two groups of 4 bits is easy to solve using the
AND operation and shifting. What about converting a simple 4 bit binary
number tothe correctASClI character? Fortunately theASCll codesfrom0-9
and A-F runin sequencebutthereisa’gap’ between9 and A. To see what this
means examine the following table

binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010
1011
1100
101
1110
1M1

hex ASCIl code
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001

WONONMPAPWN=O

01000001
01000010
01000011
01000100
01000101
01000110

TMoO®m>

For a value in the range 0 to 9 you can convert the 4 bit binary to its
corresponding ASCll code by adding 0011000 0r$30. |fyou examine the table
for values greater than 9 you should be able to see that the 4 bit value can be
converted to the corresponding ASCIl code by adding $37 (this is simply the
difference between the two codes).

Armed with this information the programis now fairly easy to write-

@PRINT
@HEX

EQU $800C
STB @TEMP
LDA @TEMP
LSRA

LSRA

LSRA
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LSRA
BSR @HPRN
LDA @TEMP
ANDA #$0F
BSR @HPRN
RTS
@HPRN CMPA #9
BHI @HP1
ADDA #$30
JSR @PRINT
RTS
@HP1 ADDA #$37
JSR @PRINT
RTS
@TEMP FCB 0

The first part of the program, starting at @HEX performs four left shifts to
move the top for bits b7-b4 down into b3-b0. Notice that, by using LSRA,
2zeros are shifted into the top four bits. After this subroutine @HPRN is called
to print the ASCII character corresponding to these four bits. The bottom 4
bits are then isolated by the ANDA #$0F which sets the top four bits to 0
leaving the rest unaltered (see bit manipulation - Chapter Five). Then
subroutine @HPRN is called again to print the second four bits in hex. The
only thing left to describe is the action of subroutine @HPRN. This first tests
to see if the value in the A register is greater than 9. If it isn’t it adds $30 and
uses subroutine @PRINT to print the ASCII character on the screen. If it is
bigger than 9 then $37 is added and @PRINT is used to print the ASCIl
character on the screen.

Even in this simple program there are a number of subtle points. Notice the
way that the task of adding the correct value to the four bits is implemented as
a subroutine so that it can be used more than once. The principle of using
subroutines as often as possible applies just as much to assembly language
programming as to BASIC. Also notice the way that the jump to the ‘internal’
subroutine @HPRN is achieved using a BSR and to the "external’ subroutine
using JSR. Thisissuch good 6809 assembly language practice that it isworth
getting used to early on but exactly why it is such a good idea will have to wait
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until Chapter Eleven. The branch instruction BHI is used because the four-bit
numbers might as well be considered to be simple binary aithough, with the
limited range of 0 to 15, two’s complement could just as easily be used.

Although this hex number printing subroutine works it is worth adding a
small program to test it. The following short program will print all the binary
numbers from 0 to 255 in hex, over and over again.

@START CLRB

@LOOP BSR @HEX
LDA #$20
JSR @PRINT
INCB
BRA @LooP

Thisshould betypedin before the @HEX subroutine and EXECuted. Y ou will
see the screen fill with pairs of hex digits faster than you can read! The JSR
@PRINT in the main program print a space {ASCIl $20) between each pair of
hex digits.

Multiple precision arithmetic - ADC and SBC.

So far, assembly language arithmetic has been limited to eight-bit
arithmetic using the A and B registers and 16-bit arithmetic using the D
register. Although these two ranges suffice for many applications it is
important to know how to go about extending the range to anything that is
desired. In this section, the problem that is tackled is the addition and
subtraction of numbers that need four memory locations to represent them.
Even though four memory locations, or 32 bits, can represent numbers in the
range

0 to 4,294,967,296

using simple binary, and roughly
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-2,147,483,648 to +2,147,483,647

using two’s complement, itis possible that you might want to use even more
memory locationsto increase therange. This is quiteeasyonce you have seen
the general principle behind extended arithmetic. In practice it is this rather
more complicated subroutine that is of practical use but it will have to wait for
the next chapter to be completed,

Consider first the simpler problem of adding together a pair of 16-bit
numbers but without using the D register. If the two numbers are stored in
memory as shown -

Most
significant Leastsignificant
1st @HNUM1 @LNUM1
2nd @HNUM2 @LNUM2

then the first thing to dois add the two least significant eight bits together by -

LDA @LNUM1
ADDA @LNUM2

This produces the correct answer for the least significant byte of the answer
but, if the values stored in @LNUM1 and @LNUM2 are large enough, the
correct answer may be so large that it needs nine bits to represent it. If you
look back to the description of the C or Carry bitin Chapter Seven you will see
that it is used to store the ‘overflow’ from any arithmetic. After adding
together the least significant bytes and storing the result, the next stage is to
add the most significant bytes of the pair of numbers. The only difficulty is
that any "carry’ produced from the adding the least significant bytes should
also be added into the result. The 6809 has two extra arithmetic operations
that will perform addition or subtraction, taking into accountany carry froma
previous operation - ADC (ADd with Carry) and SBC (SuBtract with Carry).
Both ADC and SBC work in roughly the same way as the familiar ADD and
SUB instruction in that they leave the result of the operation in the register.
The only real differenceis that ADC and SBC take account of any carry froma
previous operation and there is no ADCD nor SBCD operation. To add the
two instructions to the BASIC assembler .include the following four DATA
statements -
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REM BASIC ASSEMBLER V8.2

77 DATA ADCA &H89,&H99,&HA9,&HB9,-1
78 DATA ADCB,&HC9,&HD9,&HE9,&HF9,-1
79 DATA SBCA,&H82,&H92,&HA2,&8HB2,-1
80 DATA SBCB,&HC2,&HD2,&HE2,&HF2,-1

Thefinal program for adding the pair of 16-bit numbers together is

LDA
ADDA
STA
LDA
ADCA
STA

@LNUM1
@LNUM2
@LANS
@HNUM1
@HNUM2
@HANS

which stores the most significant byte of theanswer in @HANS and theleast

significant byte in @LANS.

The program for adding numbers taking four memory locations is just as

simple if rather ionger,

LDA
ADDA
STA
LDA
ADCA
STA
LDA
ADCA
STA
LDA
ADCA
STA

@1NUM1
@1NUM2
@1ANS
@2NUM1
@2NUM2
@2ANS
@3NUM1
@3NUM2
@3ANS
@4NUM1
@4NUM2
@4ANS

where the two numbers are stored in memory locations @ 1NUM1 to
@4NUM1 and @1NUM2 to @4NUM2 and the result is stored in @1ANS to
@4ANS. To subtract numbers taking four memory locations just use the
same program given above but replace the ADDA by SUBA and ADCA by
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SBCA. Notice that thefirstadd or subtract in each of these programs ignores
the carry bit.

It is possible to write a general program that will add and subtract any
number of memory locations but this requires yet a little more assembly
language and itis covered in the next chapter. The problem is that to operate
on a variable number of memory locations requires some way of keeping track
of the all the addresses. The idea of using labels such as @1NUM1 to
@1NUM4 is all very well forfourmemory locations, butimagine trying to use
the same method for 10 or 20 memory locations!

Example: a ‘squash’ game

Theprogram that is the subject of this section plays thefamiliar video game
of squash. Itis far from a finished game in the sense that it doesn’t include
scoring or any sort of ‘user friendliness’. However, it is a complete program
from the point of view of the essential working parts of the game. The ball, a
square block, bounces around the screen. A small bat can be moved to the
rightand left using the left and right arrow keys and the ball will bounce off it if
it happens to be in the correct position at the correct time. The most
important thing about the program, however, is that itis an excellent example
of assembly language arithmetic in action and of the way in which a larger
assembly language program is put together.

Rather than tackle the problemin one go itis easier to approach the finished
program in three main stages -

first, bounce asolid block around thescreen;
second, add the batand thelogictomoveit;
third, add the logic which willbounce the ball off the bat.

Bouncing a ‘ball’

Thetechniquesinvolved in bouncing a ball around the Dragon’s textscreen
should be well known to you from BASIC. (For general information about the
principles involved consult Chapter Six of “The Complete Programmer”
publishedby Granada.) The idea is to keep a record of the ball’s positionin
twovariables Xand Y. These are updated by adding the current values of two
other variables XV and YV i.e.
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Xold + XV
Yold + YV

Xnew
Ynew

The values XV and YV can be thought of as velocities governing the motion in
the X and Y direction. To make the ball appear to move, it has to be displayed
at the screen location given by X,Y, then removed by printing a blank at the
same location and the co-ordinates updated and then the whole cycle if
repeated. To make the ball appear to bounce all that is necessary is to reverse
one of the velocities when the ball 'hits’ a wall. For example, if the ball hits a
horizontal wall the vertical velocity has to be reversed, i.e. VY =-VY, and
likewise the horizontal velocity has to be reversed for a vertical wall.

Perhaps the best way to illustrate the methodsemployedin bouncing a ball
around the screen is to give a BASIC program. This not only shows how
things work, it provides a model for the assembly language program and will
give you a good idea of the speed advantage inherent in assembler.

20 YCORD=0
30XVEL=1

40 YVEL=1
50C$=CHR$(128)
60GOSUB 1000
70Cs=""
80GOSUB 1000
90GOSUB2000
100GOTO50

1000 LOC=XCORD +32*YCORD
1010PRINT@LOC,CS$;
1020RETURN

2000 XCORD=XCORD +XVEL

20101FXCORD =00RXCORD=31THENXVEL=-XVEL
2020 YCORD = YCORD + YVEL

2030IFYCORD =00RYCORD=15THENYVEL=-YVEL
2040RETURN
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Subroutine 1000 prints the character stored in C$. Subroutine 2000 updates
the X and Y values and checks for a possible ‘collision’ with the edge of the
screen! If a collision is detected then the appropriate velocity is reversed.
Notice that the velocities are either 1 or -1 for simplicity.

Implementing the above BASIC program in assembler is mainly a matter of
writing a subroutine to ‘print’ the ball on the screen and to update the
co-ordinates and velocities. The first problem to tackle isto write asubroutine
that will print any character on the screen at XCORD,YCORD. This can be
done by calculating the screen memory location corresponding to the
position XCORD, YCORD and then storing the appropriate character code in
it. Calculating the text screen memory location is easy, in theory at least,
using -

address = $400 + XCORD + 32*YCORD

(For the details of this equation see “The Anatomy of the Dragon”, also
published by Sigma.) Before this expression can be implemented in
assembler it is necessary to decide on a suitable representation for XCORD
andYCORD. The possible range forXCORD is0 to31 andforYCORDO to 15.
Both of these values can easily be stored in a single memory location using
simple binary as there is no possibility of a negative number ever occurring.
However, as the address calculated by the above expression is a 16-bit
quantity we must be prepared to combine eight-bit values and 16-bit
arithmetic (see Chapter Six). Also, as the velocities are going to have to vary
between 1 and -1, two’'s complement arithmetic is going to enter into the
program somewhere. So, assuming that @XCORD and @YCORD label
single memory locations used to hold the ball’s co-ordinates and @CHAR
labels a single memory location holding the character code character to be
‘printed’, the subroutine to calculate the screen memory location is -

@DRAW LDB @YCORD
CLRA

ASLB
ASLB
ASLB
ASLB
ASLB
ROLA
ADDB
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@XCORD ADCA #5600
ADDD #$0400

The first part of the program multiplies the value in @YCORD by 32. Thisis
achieved using five shift lefts. The calculation starts off using eight-bit
arithmetic but, as the final answer is going to be 16 bits, the A register is
cleared to produce a valid 16-bit number in the D register. Since the value lies
in therange 0 to 15, i.e. itis held in the first four bits, there is no chance of an
overflow for the first four shifts but the fifth shift could produce a number
outside therange of eight-bitsimplebinaryrepresentation. If you look back at
the definition of ASL youwill see thatb7 is shiftedintothe C bitand so, if the
fifth shift causes an overflow it will be in the C bit. The question is how to
move this C bit into the A register. This can be achieved using the ROLA
instruction which shifts the C bitinto b0 of the A register which is just what we
want. So multiplication by 32 can be achieved by five ASLB instructions
followed by one ROLA, leaving a valid simple binary number in the D register.
The next part of the program adds the @XCORD value. As this is an eight-bit
value it has to be added to the D register in around about way. First, the least
significant bytes are added using ADDB @XCORD. This may produce a carry
which then has to be added to the most significant byte in the A register. This
isdone usingan ADCA #$00 instruction. To understand this just ask yourself
what the eight most significant bits of @XCORD are - the answer is eight
zeros. Adding zero to take account of the carry is something that is often
encountered in eight-bit/16-bit register arithmetic. Now that @XCORD has
been added, the only operation left is the addition of $400 to give the final
address. As this is a constant there is no trouble about representing it as a
16-bit simple binary value and adding it to the D register using ADDD
#$0400.

The reason why this piece o f arithmetic was s o complicated is that the
values involved in the calculation were mainly best represented as eight-bit
quantities but the answer has to be a 16-bit quantity. This mixing of the
number of bits couldn’t have been completely avoided even by representing
all the values as 16-bit values- there is no 16-bit shift - and the alternative way
of multiplying by 32 using the MUL instruction uses eight-bit values in the A
and B registers. In most assembly language programming there is no avoiding
this sort of ‘mixed precision arithmetic’.

Atthe end of this routine we have in the D register the address of the screen

memory location in which the character code has to be stored. The question
now is what to do with it? So far we have no way of storing a value in a
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memory location whose address has been worked out in the course of a
program. What we need is the facility to say ‘use the number stored in a
register as the address of a memory location’. The 6809 does provided this
facility as a separate addressing mode called ‘indexed addressing’. Indexed
addressingis in fact a whole family of addressing modes and for this reason it
is given a whole chapter - the next one - to itselfl However, one form of
indexed addressing is so useful that its introduction cannot be postponed any
longer.

The 6809 has another register called the X register that is a full 16 bits in
length and can be used to hold an address. It can be loaded and stored using
the instructions LDX and STX in much the same way that the D register can.
However, it is different from the D register in that it isn't used to do
calculations. It is primarily an ‘addressing’ or ‘pointer’ register. That is, it is
used to hold the address of the memory location that another instruction will
operate on. For example, the instruction -

STA X

will store the contents of the A register in the memory location whose address
is stored in the X register. Don’t worry for the moment about the ”,” in front of
the X. All it is used for at this stage is to alert the assembler to the fact that
indexed addressing is being used.

Now we have the solution to what to do with the address of the screen
locationleftin the D register -

STD @SCREEN
LDX @SCREEN
LDA @CHAR
STA X

RTS

The first two instructions transfer the contents of the D register to the X
register by way of the pair of memory locations labelled by @SCREEN (a
more direct way to do this will be introduced in the next chapter). The next
instruction loads the A register with the character codeandthe STA , X stores
this value into the screen memory location whose address isin X. Finally RTS
completes the @DRAW subroutine.
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The next subroutine that is required it the subroutine that updates the
co-ordinates and changes the velocities when there is a collision. The
@UPDATE subroutine is another exercise in assembly language arithmetic
but this time with the added interest of using conditional branches to test the
results. The subroutine is best thought of in two parts -

update @XCORD and check for a bounce
update @Y CORD and check for a bounce

Updating @XCORD is just a matter of adding the contents of @XVEL to it -
the only complication is that @XVEL has to be a two’s complement number
torepresent 1 and-1. In practice this causes no problem because the values of
the co-ordinates are small and positive and so they can be just as easily
considered to be in two’s complement representation as in simple binary.
{Notice that simple binary numbers in the range 0 to 127 have exactly the
same bit pattern in two’'s complement.) This settled, the subroutine is easy to
write by using the BASIC subroutine as a guide -

@UPDATE LDA @XCORD
ADDA @XVEL
STA @XCORD
BNE @SKIP1
NEG @XVEL
@SKIP1  CMPA #31
BNE @SKIP2
NEG @XVEL
@SKIP2  LDA @YCORD
ADDA @YVEL
STA @YCORD
BNE @SKIP3
NEG @YVEL
@SKIP3  CMPA #15
BNE @SKIP4
NEG @YVEL
@SKIP4  RTS

The section of the program from @UPDATE to @SKIP2 updates @XCORD
and @XVEL and the section from @SKIP2 to @SKIP4 does the same for
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@YCORD and @YVEL. As these two halves are so similar, only the first half
willbe described. All of the arithmetic in this subroutine can be carried out in
eight bits using the A register. The contents of @XCORD are added to
@XVEL and then stored back into @XCORD. The only thing to notice here is
that @XVEL could be negative (i.e. -1) and so @XCORD could decrease in
value. The BNE checks for a zero result. If one is found the @XVEL has its
sign changed using the NEG instruction. Notice that there is no need to use
CMPA #0 because the condition code bits are set by the STA instruction. To
check for the other extreme value, however, it is necessary to use CMP #31.
Once again, however, a BNE instruction is used to skip round the NEG
@XVEL instruction. The second half of the program updates @YCORD and
@YVEL in roughly the same way.

All that now remains is to write the main program that uses the
subroutines-

@START BSR @UPDATE
LDA #$80
STA @CHAR
BSR @DRAW
LDA #$8F
STA @CHAR
BSR @DRAW
BRA @START
@XCORD FCB 0
@YCORD FCB 0
@XVEL  FCB 1
@YVE FCB 1
@CHAR FCB 0
@SCREEN FDB 0

This works in the same way that the BASIC main program given earlier did.
The program is in the form of a loop and each time through the @UPDATE
subroutine is used to move the ball and the @DRAW subroutine is used
twice, once to display the ball and once to print a blank to remove it. If you
were to put the main program together with the subroutines and EXEC the
program you would see the ball bounce around the screen very fast. The only
trouble is that at the moment the BASIC assembler cannot handle the
instructions LDX and STA ,X.
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Adding simple indexed addressing to the BASIC
assembler

Thesimplestway to addindexing totheBASIC assembleristotestfora”,”
in the address field and then set TYPE =3 as a result. There are a few other
matters to be cleared up but the changes are not at all difficuli-

1 REM BASIC ASSEMBLER V8.3

81 DATA LDX,&HS8E,&HIE,&HAE,&HBE, -1
5035 IF TYPE=3 THEN RETURN

5526 IF L$="," THEN GOTO 5800

5800TYPE=3
5810 AF$ = "&H84"
5820 RETURN

6260 IF TYPE=2 ORTYPE=1 OR TYPE=3 THEN POKE P,A

Subroutine 5800 will eventually be expanded to cope with the job of coding
other varieties of indexed addressing.

Testing and perfecting the bounce program.

Now thatthe BASIC assembler can handle the indexed addressing mode
used in @DRAW the whole program can be typed in and tested. Remember
to include all of the two subroutines following the main program. Once you
have entered the program correctly you can EXECute it and see the results.
You might be a little disappointed at what you see as the ball zips about the
screenallittle too fast! In factit zips about the screen so fast that it is difficult to
see the whole ball at any given moment. The solution to this problem is to
include a delay subroutine between the first and second uses of the @DRAW
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subroutine. The standard way of implementing any sort of delay in BASIC or
in assembler is via a time-wasting loop - a "delay loop’.

@DELAY LDD @TIME
@DLOOP SUBD #
BNE @DLOOP
RTS
@TIME  FDB $1000

The longest possible delay is produced by a value of @ TIME equal to 0. If you
insert BSR @DELAY following the first BSR @DRAW and re-run the
program you will see a distinct improvement. Try altering the value stored in
@TIME to see the effect of different delays.

Adding the bat

Producing a moving bat controlled by two keys on the keyboard is in some
ways easier than moving and bouncing the ball and in some ways more
difficult. Rather than being a single character like the ball, the bat has to be
made up from a number of characters to be largeenough to make the game
playable. However, theactual positioning of the bat is easierbecause it only
moves from side to side.

The bat is made up from three solid blocks and its position on the screenis
controlied using the x co-ordinate of the leftmost block (see fig 8.1). The
problem of drawing the bat is considerably eased by the fact that it only
moves horizontally. If the x co-ordinate of the lefthand block of the bat is
stored in @XBAT, then the address of the corresponding screen memory
location is -

address = base + @XBAT

where 'base’ is the address of the screen memory location on the far left of the
sameline that thebatison. Ifthebatistobe printed on line 14, base is equal to
$05C0. The subroutine to draw the bat at @XBAT is -

@DBAT LDB @XBAT
CLRA
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4

@XBAT (+1) (+2)

Fig8.1 Thebat

ADDD #$05C0

$05C0
STD @ADDRESS
LDX @ADDRESS
LDA @CHAR
STA X

LDD @ADDRESS
ADDD i

STD @ADDRESS
LDX @ADDRESS
LDA @CHAR
STA X

LDD @ADDRESS
ADDD #1

STD @ADDRESS
LDX @ADDRESS
LDA @CHAR
STA X

RTS

137



Language of the Dragon

The way that this program works is straightforward, in that it first calculates
the address of the screen location corresponding to the left hand block of the
bat and then stores the character code in @CHAR in it, butas the bat consists
of three blocks, it then has to store the same character code at
@ADDRESS +1 and @ADDRESS +2. This it achieves by using the D
register to add one to the contents of @ADDRESS and then using itin the X
register to govern where the contents of the A register are stored. This is a
ratherlong way of storing somethingin three consecutive memory locations.
There is a more concise way of achieving the same ends and this will be
described in the next chapter.

All that is needed now is a second subroutine to update the bat’s position
depending on which of the two arrow keys is pressed. The update procedure
issimple. If the left arrow key is pressed then @XBAT should be decreased by
one and if the right arrow key is pressed @XBAT should be increased by one.
There are a number of extra considerations apart from just moving the bat
that make the update subroutine just a little more complicated than this. In
the first place itisimportant to make sure that the bat doesn’tgo off theedges
of the screen and in the second it would be easier to play the game if the
keyboard had a fast auto-repeat feature. The first requirement merely
involves checking that the value in @XBAT is greater than 0 before
subtracting one from it and less than 29 before adding one to it. The
auto-repeat facility is also easy to produce once you know that the Dragon
maintains a table of keys pressed at $150 to $159 and the way to fool it into
thinking that a new key has been pressed is to store $FF in each of these
locations. In fact, as a press of either arrow key is recorded in memory
locations $151, $157 and $158 these are all that have to be set to $FF in this
case. The update subroutineis -

@UPBAT JSR @KEYB
BEQ @REPKEY
CMPA £508
BNE @RARR
LDB @XBAT
BEQ @REPKEY
DEC @XBAT
@RARR CMPA #s09
BNE @REPKEY
LDB @XBAT
CMPB #29
BEQ @REPKEY
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iNC @XBAT
@REPKEYLDA #$FF
STA @ROLL
STA @ROLL2
STA @ROLL3
RTS
@ROLL EQU $151
@ROLL2 EQU $157
@ROLL3 EQU $1568
@KEYB EQU $8006

The first instruction uses the machine code subroutine @KEYB to read the
keyboard. This subroutine returns the ASCII code of any key pressedin the A
register or returns zero if no key is pressed. If no key is pressed the second
instruction transfers control to the end of the @UPBAT subroutine. The rest
of the subroutine checks for a left or right arrow key press and only updates
@XBAT ifitisin the correct range. The last part of the subroutine, starting at
@REPKEY implements the auto -repeat key described earlier.

All thatis now required is a new version of the main program given earlier.

@START BSR @UPDATE
LBSR @UPBAT
LDA #$80
STA @CHAR
BSR @DRAW
BSR @DBAT
BSR @DELAY
LDA #$8F
STA @CHAR
BSR @DRAW
BSR @DBAT
BRA @START
@XCORD FCB 0
@YCORD FCB 0
@XVEL FCB 1
@YVEL FCB 1
@CHAR FCB 0
@ADD
RESS  FDB 0
@XBAT FCB 12
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{Notice the need to use LBSR to jump to the @UPBAT subroutine because it
is now too far away from the start of the program to be reached using BSR). If
you type this program in along with all the subroutines used and then EXE-
Cute the program you will see the ball bounce around the screen as before but
now there is a bat, initially positioned roughlyin the middle of the screen, that
you can move from one side of the screen to the otherusing the arrow keys.
The only trouble is that the ball passes right through the bat just as if it wasn't
there!

Detecting the bat

This is the final part of the squash program, consisting of a single new
subroutine to detect the ball hitting the bat and to act upon it. There are a
number of ways that the ball colliding with the bat could be detected but the
most instructive from the point of view of assembler is by comparing the

— 3 ball positions

BAT
Fig8.2 3possible ball positions “hitting” the bat
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co-ordinates. If the ball is in contact with the bat it can be in any one of the
threepositionsshownin fig 8.2. Thisimplies that you can detect when the ball
should be bounced from the bat by the following condition -

@YCORD = bat’s horizontal position - 1
and
0< = XCORD-XBAT< =2

To express this another way, to detect a bounce the subroutine has to test
that the difference between @XCORD and @XBAT lies in the range 0 to 2:

@BBOUNCE LDA @YCORD
CMPA #$13
BNE @NBOUNCE
LDA @XCORD
SUBA @XBAT
BMI @NBOUNCE
CMPA #2
BGT @NBOUNCE
NEG @YVEL

@NBOUNCE RTS

If the @Y CORD of the ball is just one line above the bat (as shown in fig 8.2)
then the x co-ordinates are checked. This is done by subtracting them. If the
result is negative then the difference is less than zero so a bounce cannot
occur. If the difference if positive it is compared to 2, once again if it is greater
abounce cannotoccur. If the co-ordinates do satisfy all the conditions the the
bounce is implemented simply by reversing @YVEL.

The @BBOUNCE subroutine is easily added to the previous main program
byinsertinga LBSR @BBOUNCE following the LBSR @UPBAT instruction.
When you EXEC the entire program you will see the ball bouncing round as
before but now itwill bounce off the bat if you happen to get itinto the correct
position! Obviously, to make a finished game out of the program you would
have to add extra features, including a count of the hits and misses, but you
should be able to do this on your own.
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The complete program

To make sure that you get everything in theright place the output of the
BASIC assembler for the squash program is given below -

7000 8D 26 @START BSR @UPDATE
7002 17 AC LBSR @UPBAT
7005 17 D4 LBSR @BBOUNCE
7008 86 80 LDA #$80

700A B7 7022 STA @CHAR

700D 8D 44 BSR @DRAW

700F 8D 6B BSR @DBAT

7011 8D 5E BSR @DELAY
7013 86 8F LDA {$8F

7015 B7 7022 STA @CHAR

7018 8D 39 BSR @DRAW
701A 8D 60 BSR @DBAT

701C 20 E2 BRA @START
701E 0 @XCORD FCB 0
701F 0 @YCORD FCBO
7020 1 @XVELFCB1

7021 1 @YVELFCB 1

7022 0 @CHAR FCBO
7023 0 0 @SCREEN FDB 0
7025 0 0 @ADDRESS FDB 0
7027 C @XBAT FCB 12
7028 B6 701E @UPDATE LDA @XCORD
7028 BB 7020 adda @XVEL

702e B7 701E STA @XCORD
7031 26 3 BNE @SKIP1

7033 70 7020 NEG @XVEL

7036 81 1F @SKIP1 CMPA 31
7038 26 3 BNE @SKIP2

703A 70 7020 NEG @XVEL

7030 B6 701F @SKIP2 LDA @YCORD
7040 BB 7021 ADDA @YVEL
7043 B7 701F STA @YCORD
7046 26 3 BNE @SKIP3
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7048
704D
704F
7052

7053
7056
7057
7058
7059
705A
705B
705C
705D
7060
7062
7065
7068
7068
706E
7070

7071

7042
7077
7079
707A
707C
707F
7080
7083
7086
7089
708C
708E
7091

7094
7097

70

26
70
39

7021

7021

701F

701E

400
7023
7023
7022
84

707A

FB

7027

5C0

7025
7025
7022

7025

7025
7025
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NEG @YVEL
@SKIP3 CMPA 415
BNE @SKIP4
NEG @YVEL
@SKIP4 RTS

@DRAW LDB @YCORD
CLRA

ASLB

ASLB

ASLB

ASLB

ASLB

ROLA

ADDB @XCORD
ADCA #$00
ADDD #$0400
STD @SCREEN
LDX @SCREEN
LDA @CHAR
STA X

RTS

@DELAY LDD @TIME
@DLOO SUBD #1
BNE @DLOOP

RTS

@TIME FDB $1000
@DBAT LDB @XBAT
CLRA

ADDD #$05C0

STD @ADDRESS
LDX @ADDRESS
LDA @CHAR

STA X

LDD @ADDRESS
ADDD #1

STD @ADDRESS
LDX @ADDRESS
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709A B6 7022 LDA @CHAR
709D A7 84 STA X

709F FC 7025 LDD @ADDRESS
70A2 31 ADDD #1

70A5 FD 7025 STD @ADDRESS
70A8 BE 7025 LDX @ADDRESS
70AB B6 7022 LDA @CHAR

70AE A7 84 STA X

7080 39 RTS

7081 BD 8006 @UPBAT JSR @KEYB
7084 27 1A BEQ @REPKEY

7086 81 8 CMPA #$08

7088 26 8 BNE @RARR

70BA F6 7027 LDB @XBAT

708D 27 1N BEQ @REPKEY

70BF 7JA 7027  DEC @XBAT

70C2 81 9 @RARR CMPA #3509
70C4 26 A BNE @REPKEY

70C6 F6 7027 LDB @XBAT

70C9 ¢t 1o CMPB #29

70C8B 27 3 BEQ @REPKEY
70CD 7C 7027  INC @XBAT

7000 86  FF @REPKEY LDA #$FF
7002 B7 151 STA @ROLL

70D5 B7 157  STA @ROLL2

7008 B7 158  STA @ROLL3

7008 39 RTS

@ROLL EQU $151

@ROLL2 EQU $157
@ROLL3 EQU $158
@KEYB EQU $8006

70DC B6 701F @BBOUNCE LDA @YCORD
70DF 81 D CMPA #13

70E1 26 F BNE @NBOUNCE

70E3 B6 701E LDA @XCORD

70E6 BO 7027 SUBA @XBAT

70E9 2B 7 BMI @NBOUNCE
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70EB 81 2 CMPA #2

70ED 2E 3 BGT @NBOUNCE
70EF 70 7021  NEG @YVEL
70F2 39 @NBOUNCE RTS
Conclusion

In this chapter you have seen the way that a large assembly language
program is built up from subroutines. You should now have the flavour of
assembly language programming and if you have typed in and tried the
squash program an idea of some of the difficulties and rewards. The BASIC
assembler is working at its limits to assemble a program of over 100 lines and
fortunately the examplesin the rest of the book do notapproach this lengtht It
should now be clear that if you are going to use assembler at all often you
should purchase a good, fastassembler. Study the squash program untilyou
understand what each part is doing. To check that you do understand try
takingitalittle further, add a routine to make the ball go out of play if you miss
it, a score line and so on.
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The addressing registers-
indexed addressing

It may come as something of a shock to discover that there are still five
registers inside the 6809 yet to be discussed! All of these registers are
concerned with manipulating addresses rather than data and so it makes
sense to treat them all together in one chapter. The idea of using a register to
specify an address was briefly introduced in the previous chapter in
connection with the the squash program. Even though this was a fairly simple
example it was difficult to avoid using a register to specify amemory location
whose address had been calculated in the course of the program. Thisidea of
calculating the address of a memory location is a very general and powerful
and forms part of almost all assembly language programs of any size. As a
6809 address uses 16 bits it is clear that a general addressing register hastobe
able to store 16 bits. What is less obvious is that the range of operations that
are generally applied of addresses is smaller than the range applied to data.
For thisreason, the6809’s addressingregistersareassociated with adifferent
set of operations from the A and B registers. The use of the addressing
registers and their associated operations gives the 6809 a whole family of
extra addressing modes collectively known as ‘indexed addressing’.

Indexedaddressing is such a large subject that it would be possible to write
a reasonable length book on how the indexed addressing modes work and
liow they are used! Fortunately, once you have picked up the idea of
calculating an address using the addressing registers, then all the different
variations are fairly easy to understand. What is more difficult is trying to see
what use some of the more exotic indexed addressing modes might be useful
for. The best answer to this question is that when you are writing a program
that needs or would benefit from their use you will soon recognise it!
However, to help you get started with indexed addressing there are some
‘sound’ examples at the end of the chapter!
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The addressing or pointer registers

There are five registers within the 6809 that are exclusively concerned with
the matter of specifying addressas. Four of them are full addressing registers,
in the sense that they are 16 bits long and able to hold a complete address, and
one of them, the DP or ‘Direct Page’ register, is only eight bits long and has to
be used in conjunction with other information to determine a full address. In
fact the DP register is so different and special that it is better to treatitin a
section all on its own towards the end of this chapter. The four full addressing
or ‘pointer registers’ are called the X, Y, Uand S registers. Although all four of
them can be used in the same way as far as index addressing goes, the X and
Y registers are a little more limited than the U and S registers . In particular, the
U and S registers are involved in so-called ‘stack operations’ which are
explained in the next chapter. Also the S register is used by the 6809 to keep
track of return addresses during subroutine calls and returns. For this reason
the X and Y registers are called the ‘index registers’ and the U and S registers
are called the ‘stack pointers’. Despite the different names used for the
registers, it is important to realise that as far as indexed addressing is
concerned the four registers are identical. However, even though they are
identical in theory, the Dragon uses the S register extensively and it is safer to
use the index registers for indexing and the stack registers mainly for stack
operations, as described in the next chapter.

Operations on the pointer registers

Although the pointer registers are used for a different purpose to the A and
B registers there are a number of operations that they share with them. For
example, in the same way that you can load and store the A and B registers
using LDA, LDB, STA and STB you can load and store the pointer registers
using similar instructions e.g. LDX loads the X register. Because they are so
similar to the already familiar A and B register operations, rather than treat
each of the operations on the pointer registers at length, it should be
sufficient to list them:
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the load instructions

LDS address
LDU address
LDX address
LDY address

the store instructions

STS address
STU address
STX address
STY address

the compare instructions

CMPS address
CMPU address
CMPX address
CMPY address

The action of each of these instructions should be obvious. However, it is
worthpointingout that each pointer register is 16 bits long. Forexample, LDX
address loads the X register taking the most significant byte from ‘address’
and the least significant byte from ‘address + 1. Apartfrom these three forms
of instruction, load, store and compare, there are some completely new ones
that also work with the pointer registers and they will be described later in this
chapter.

Simple indexing

Theidea of using aregisterto hold the address tobe used by an instruction
is not a difficult one. Any instruction that can be used with indexed
addressing can take its address from any of the four pointer registers. The
way that simple indexing is indicated in assembler is by writing the name of
the pointer register that contains the address in the address field of the
instruction preceded by a comma. So for example,
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LDA,X

loads the A register from the memory location whoseaddress is stored in the
X register. Similarly,

STA U

storesthe contents of the A register in the memory location whose addressis
stored in the U register.

You may be wondering what the comma in front of the register's name is
for. The answer is that you can write anumberin the range -32768 t032767 in
front of the comma that will automatically be added to the contents of the
register and the result used as the address of the memory location. For
example, if the X register contains $6000 the instruction

LDA 3,X
will load the A register from $6003. The number to the left of the commais
known as the ‘offset’ because, rather like the offset used in relative
addressing, it indicates how far away, in terms of memory locations, the data
is from the address currently in one of the pointer registers. So the general
form of 'simple’ or ‘constant offset indexing’ as it is more properly called is -

mnemonic offset,pointer register

Some valid examples of constant offset indexing are -

LDA -32,X (load the A register from X-32)

ADDB 5U (add the contents of U+5 to the B
register)

INC 1Y (add one to memory location Y + 1)

Notice that the LDA , X is a shorthand way of writing LDA 0,X.

Itisimportant to realise the contents of the pointerisn’t altered in any way
by being used in indexed addressing. For example, LDA 1,X only adds 1 to X
to work out the address tobe used. The contents of Xafter theinstruction are
the same as they were before the instruction. In other words, the address
calculation only produces a temporary result.
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As an example of how convenient constant offset indexing can be,
consider subroutine @DBAT in the previous chapter. The problem that the
subroutine solved was to calculate an address and then store the contents of
@CHAR in ‘address’, ‘address’+ 1 and ‘address’ +2. Now this can be solved
much more directly using constant offset indexing

@DBAT LDB @XBAT
CLRA
ADDD #$05C0
STD @ADDRESS

LDX @ADDRESS
LDA @CHAR

STA 0,X
STA 1,X
STA 2,X
RTS

The address is calculated in the same way and then transferred to the X
register using @ADDRESS as an intermediary. Then the A register is loaded
from @CHAR and stored in the three consecutive memory locations given by
X, X+ 1 and X + 2. If you compare both versions of the subroutine you will
immediately see that indexed addressing not only makes the program
shorter, it also makes it easier to understand. The subroutine would be even
shorter and easier to understand if there was some way of transferring the
contents of the D register directly into the X register. There is indeed an
instruction that will transfer the contents of any register to any other.

The TFR and EXG instructions

_Although the two instructions TFR (TransFeR registers) and EXG
(EXchanGe registers) are not really connected with the main subject of this
chapter, they can now be described because all of the 6809's registers have
been introduced, if not fully discussed. The instruction -

TFRr1,r2

will transfer the contents of register r1 into register r2 without altering the
contents of r1. For example,
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TFRA,B

resultsinthe contents of the A register alsobeing stored in the B register. (in
other words, both registers now contain the same value.) The instruction -

EXGr1,r2

is superficially likethe TFR instruction but it transfers the contents of register
r1intoregister r2 AND it also transfers the original contents of r2 into r 1. That
is, it swaps the contents of the registers. For example,

EXGA,B

exchanges thecontents ofthe A and B registers. Aftertheinstruction, the A
register contains the value that was in the B register and the B register
contains the value that was in the A register.

The instructions TFR and EXG can be used to transfer or exchange the
contents of any pair of 6809 registers that are the same size. That is, you can
transfer or swap any pair of eight-bit registers, and any pair of 16-bit registers,
but you cannot transfer or exchange between an eight- and 16-bit register.
For example,

TFR A,CC

is valid because the both the A and CC (Condition Code register) are both
eight -bit registers, but

TFR A X
is not allowed because the A register is eight-bit and the X register is 16-bit.
However, as the D register is 16-bit and is made up of the A and B registers
this forms a link between the 6809's eight- and 16 -bit registers that can be
used to transfer and exchange values between all the registers.
Using the TFR instruction and constant offset indexed addressing, the
@DBAT subroutine becomes -

@DBAT LDB @XBAT
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CLRA

ADDD  #$05C0
TFR DX
LDA @CHAR
STA 0,X
STA 1,X
STA 2,X

RTS

and now looks particularly simple!

Accumulator offsetindexed addressing

Constantoffsetindexed addressing is very useful if you want to use a few
memory locations next to each other, as in the @DBAT subroutine, but
consider the problem of zeroing a whole section of memory. You could use
something like -

LDX # @START
CLR 0,X
CLR 1.X
CLR 2.X
CLR 3,X

and so on until the appropriate amount of memory had been cleared. (The
address of the first memory location to be cleared is labelled by @START.)
However, if the program had to clear say 100 locations this method would
result in rather a long program.

What is required to solve the problem is the facility to specify a "variable
offset’. Thisis provided by the nextlevel of indexed addressing, "accumulator
offset indexed addressing’. As you might be able to guess from its name,
accumulator offset indexed addressing works in the same way as constant
offset indexed addressing except that the offset is taken to be the current
contents of one of the accumulators A, B or D. For example,
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LDAB,Y

loads the B register from the memory location whose address is obtained by
adding the contents of the B register to the contents of the Y register. Notice
thatonceagain neither the contents of the B register northecontentsof the Y
register are affected by thisinstruction. The contents of the eight-bit registers
A and B are treated as two’s complement values so, that using these
registers, you can address the current contents of a pointer register from-128
to +127. The value in the D register is also treated as a two’s complement
value when itis added to the pointer register so this gives a range of -32768 to
+32767 from the current contents of the pointer register. You may be a little
puzzled by an instruction like -

LDA AY

becausethe A register’s value is changed by thisinstruction. There isno need
to worry! The original contents of the A register are added to the contents of
the Y register and then this result is used as the address of the memory
location that A is loaded from.

Using accumulator offset indexed addressing the problem of clearing 100
memory locations is easily solved -

CLRA

LDX #@START
@LOOP CLR AX

INCA

CMPA %99

BLE @LooP

which can be further simplified if the memory can be cleared starting from
@START +99 and working down to @START -

LDA #99

LDX @START
@LOOP CLR AX

DECA

BNE @LooP
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If you want to clear (or do anything else!) to more memory locations than
can be addressed by an eight-bit two’s complement offset then you can
always use the D register to specify a 16-bit two’s complement offset.
However, you should keep in mind the fact that while the D register is being
used to specify an offset, both the A and B registers are unavailable for
calculations unless the D registers value is saved and restored. One possible
solution is to use the EXG instruction to swap the D register’s value with one
of the other pointer’ register’s.

Auto increment/auto decrement indexing

There is a second way of ‘stepping’ through a series of memory location
using indexed addressing, known as ‘auto increment/decrement indexing’.
The basic idea is that you can specify that the pointer register automatically
has either 1 or 2 added to or subtracted from it each time it is used. For
example,

LDA X+

means “load the A register from the memory location whose addressisstored
in the X register and then add onetoX”. Ingeneral, writing one plus sign after
the pointer register’'s name is taken to mean that 1 should be added to the
register AFTER the operation is complete, thus leaving the register ‘pointing’
at the next memory location. Writing two plus signs after the register’'s name
will cause it to be incremented by 2 following the operation. Unfortunately
thisis where it finishes. Writing three plus signs will simply give you an error
message. This adding one or two to the pointer register after the operation is
known as ‘auto increment mode’. If you want to use memory locations that
differ by 1 or2 inascending order then autoincrementmode is by far the best
method. For example, the program to clear 100 memory locations is best
written as

CLRA

LDX #@START
@LOOP  CLR X+

INCA

CMPA #99

BLE @LOooP
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Notice that auto increment is only allowed with a constant offset of zero.

‘Auto decrement’ works in a very similar way to auto increment apart from
subtracting 1 or 2 BEFORE the instruction is completed. For example,

LDA ,-X

will first subtract 1 from the contents of the X register and then use the result
as the address of the memory location that A is loaded from. Notice that the
minus sign is written in front of the pointer to indicate that the
subtraction is done before the contents of the register are used as the address
of the memory location. In the same way, writing two minus signsin front of
the pointer register’s name will subtract 2 from the register’s value before it is
used as an address. Notice that in both cases the addition or subtraction
actually alters the value stored in the pointer register. Some valid example of
auto increment and decrement are -

LDA -X subtract 1 from the X register and then load the A
register from the memory location that it ‘points’
at

STA ,--U subtract 2 from the U register and then store the
A register in the memory location that it ‘points’
at

CLR )Y + clear the memory location that Y ‘points’ at and
thenaddonetoY

NEG,S+ + performs the NEG operation on the memory
location whose address is stored in S and then
adds2toS

Ingeneral, ifyou wanttouse a series of memory locations that differby 10r2,
use auto increment or auto decrement indexed addressing - it is fast and
efficient. If you want to use memory locations that differ by more than 2 or
that differ by a variable amount then use accumulator offset indexed
addressing and use the arithmetic operations on the accumulators to update
the address.
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The effective address - the LEA instruction

All of theindexed addressing methods described so far have one thing in
common, they all work out an address to be used by the instruction that they
are part of. The address that is calculated in the course of indexed addressing
is usually called the 'effective address’. On some occasions it would be an
advantage if this effective address could be stored for later use. For example,
suppose during the course of a program it was necessary to use a memory
location specified by indexed addressing more than once, then, rather than
use the same indexed addressing mode, it would be better to re-use the
effective address calculated the first time. This is where the LEA (Load
Effective Address) instruction comes The LEA instruction can only be used
with the indexed addressing mode and its action to store the resulting
effective address in one of the pointer registers. For example,

LEAY 3,X

will load the Y register with the effective address calculated by 3,X. In other
words, after the instruction the Y register will contain the value in the X
register plus 3. You can use the LEA instruction to store an effective address,
calculated using a given pointer register, back into itself. For example,

LEAX 3,X
will store the effective address obtained by adding 3 tothecurrentvalueofthe
X register back intothe Xregister. Acommonuseofthe LEA instructionisas
anincrement or decrement of a pointer register. For example, another way to
write the program that clears 100 memory locations is,

CLRA
LDX @START

@LOOP CLR 0,X

LEAX  1,X
INCA

CMPA  #99
BLE @LooP

where the LEAX instruction adds one to the X register each time through the
loop. Notice that the LEA instruction can be used with any of the indexed
addressing modes. So for example,
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LEAX S+
LEAY  AX
LEAU  D,U

areall valid LEA instructions. Notice that LEAX 1,Xand LEAX -1,X are the
pointer register equivalents of INC and DEC.

The ABX instruction

The ABX {(Add B to X) instruction is notreally in the mainstream of 6809
instructions in that it singles out the X register for special treatment! The
effect of the ABX instruction is to add the contents of the B register
considered as a simple binary number to the X register. You might think that
ABX is the same as LEAX B,X. However, there is an important difference.
The LEAX B,X instruction treats the contents of the B register as a two’s
complement number and so the range of the effective address is X-128 to
X+127 but the ABX instruction treats the contents of the B register as a
simple binary number and this give a range of X to X +255.

Program counter relative

'Program counter relative addressing’ is an advanced form of indexed
addressing that you can easily use without understanding. For this reason,
you might like to postpone reading this section until you are entirely happy
with the other indexed addressing modes.

In the chapter on branching, it was briefly mentioned that one of the
advantages of relative addressing was the fact that a program that used
nothing but relative addressing could be moved about in memory and run
without having to be re-assembled. The trouble is, that while branch and
branch-to-subroutine instructions use relative addressing, instructions that
manipulate dataactually quote the address of the memory location that they
aregoing to use. If you want to write a fully position-independent program
then there has to be a way of using relative addressing with any instruction.
The similarity between constant offset indexed addressing and relative
addressing has already been noted. The only difference between relative
addressing and constant offset indexed addressing is that relative addressing
adds the offset to the PC register and indexed addressing adds the offset to
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one of the pointer registers. The PC register is not a general purpose pointer
register but, to make relative addressing available to all 6 809 operations, it can
be used in a constantoffsetindexed addressing mode called 'PC relative’. For
example,

LDA5,PC

would access thememory location fivememory locations further onfromthe
startof the nextinstruction (see relative addressing in ChapterSeven). In the
same way that the BASIC assembler automatically calculates two’s
complement offsets for relative addressing, most assemblers will calculate
the correct offset for P C relative from the value of an address label. So -

LDA @DATA,PC

would calculate the offset required to load the A register from the memory
location labelled by @DATA,

Using PC relative addressing to produce position independent programs is
not a difficult technique but it is better to concentrate on writing assembly
language programs that work before venturing into producing more
sophisticated programs. For this reason, P C relative addressing will not be
built into the BASIC assembler and won’t play any part in forthcoming
examples. This facility is to be found in both of the commercially available
assemblers detailed in Appendix Il.

Indirection

Like the last section, this one deals with a topic that can be left until you are
ready to tackle something new! ‘Indirection’ is, in principle, a simple idea that
can geta little complicated in practice! The idea of using an address to specify
a memory location is something that you should already be thoroughly
familiar with. However, in the 6809, an address is nothing more than a 16-bit
simple binary number and so it can be stored in two memory locations just like
any other 16-bit number. The idea behind indirectionis that, instead of giving
the address of the memory location that holds the data, you supply the
address of a pair of consecutive memory locations that contain the address of
the memory location that contains the data! This idea is easier to understand
than it is to describe! If simple addressing is imagined as,
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memory

address —> | data

then indirect addressing can be depicted as:

two memory
locations memory

address ——> address —_— data

Indirect addressing is sometimes expressed as "'giving the address of the
address”. Once you see the general idea you will not be surprisedto learn that
you can applyindirection more than once. If firstlevelindirection is giving the
address of the address then second levelindirection is ‘giving the address of
the address of the address’. And so on to third level indirection and so on to
.....1 Perhaps fortunately, the 6809 will only handle one level of indirection in
an address field. In particular, you can only use indirect addressing in
conjunction withhextended addressing and indexed addressing. The usual
way of indicating indirection is to enclose the address field in square brackets
but as these are not easy symbols to type on the Dragon we will use {)
brackets. For example,

LDA $4000
means load the A register with the contents o f memory location $4000 but
LDA ($4000}
means that $4000 and $400 1 contain the address thatthe Aregistershould be
loadedfrom. When indirection is used with indexed addressing the principle
is that the effective address is calculated first (ignoring the indirection) and

then this effective address is used as the address of the memory location
where the actual address is stored. For example,
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LDA (4,X}

willfirstadd 4 tothe contents of the X register to getthe effective address and
then use this as the address of‘the pair of memory locations that hold the
address of the data.

Indirect addressing is available on all of the indexed addressing modes
apart from auto increment by 1 and auto decrement by 1. That s,

STA X+ +}
and

STA (,--X)
are perfectly good but

STA {X+)
and

STA (,-X)

are both invalid. The reason for this restriction is not difficult to see. If a
pointer register contains the address of a 16 -bitaddress stored in two memory
locations, what is the purpose of adding or subtracting 1 from it to make it
point at half of the address pair?

The reason that indirect addressing is treated in this chapter is that ALL
indirect addressing including extended indirect addressing is implemented as
avariety of indexed addressing. You will find indirection a valuable tool when
you come to write large assembly language programs that are intended for
use by other programmers. For example, the Dragon’s BASIC ROM contains
many uses of indirection. One that is worth mentioning is the indirect jump. If
you look at the table in Appendix | you will see that the JMP and JSR
instructions can be used with indexed addressing and so

JMP (address)
and

JSR (address)
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are both valid. You may find it difficult to think of a reason for using indirect
jumps but suppose that you were writing a large program consisting of a
collection of subroutines that kept changing. As the subroutines changed in
size their starting addresses would also change and any program that used
the subroutines would have to be updated to take into account their new
positions. However, if you followed the simple rule of placing all the
subroutine start addresses together in the form of a table - a ‘jump table’ - at
the start of your program and insisting that other programmers used the
subroutines by indirect jumps through the table then, as long as you kept the
table up-to-date, you could move the start addresses of the subroutines as
much as you liked without affecting anyone. This is in fact what is done in
most large programs but the use of indirect jump tables and such like really
comes under the heading of advanced assembly language programming and
be will returned to briefly in Chapter Eleven.

Summary of indexed addressing modes

If you include indirection there is a very wide range of indexed addressing
modes available to the programmer and it is worth gathering them togetherin
one place -

Mode example indirect example
Constant offset LDA 5,X LDA (5,X)
Accumulator offset LDAD,Y LDA (D,Y)
Auto increment by 1 LDA,S+ not valid

Auto increment by 2 LDA,Y + + LDA{,Y+ +)
Auto decrementby 1 LDA -Y not valid

Auto decrement by 2 LDA ,--U LDA{,--U)

PC relative LDA3,PC LDA(3,PC)
Extended indirect =~ ------ LDA ($400)

These are all of the possible indexed addressing modes. Notice that you
cannot combine modes to obtain new addressing modes. For example, LDA
3,X+ + is illegal because auto increment can only work without an offset,
LDA -X+ + + isillegal because you can only auto increment by 1 or 2 and
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LDA ,X--is illegal because you can only auto decrement before the effective
address is used.

Machine code details of indexed addressing

You can use indexed addressing without ever worrying about how it is
implemented in 6809 machine code but if you are at all interested in
understanding how an assembler works, or if you are interested in producing
efficient code, then it does help to know how an instruction like LDA 5,X is
assembled. In fact the constant offset indexed mode can be assembled into
machine code in four different ways depending on the range of the offset.

The fact that an instruction is using indexed addressing is conveyed in its
machine code in the same way as extended, immediate or direct addressing.
For example, $86 is the code for LDA using immediate addressing and $A6 is
the code for LDA using indexed addressing, but which FORM of indexed
addressing? The additional information about which of the many variations of
indexed addressing is contained in an additional code that follows the
machine code. This is called the ‘post byte’. In other words, an instruction
using indexed addressing uses two memory locations, one to store its
instruction code and the following one to supply information about the actual
form of indexing being used. The format of the post byte can be seen in the
Indexed Addressing Modes Table in Appendix !. The coding of an indexed
instruction using this table is quite straightforward. For example, LDB A,Y
assembles to $E6, $A5. The $E6 is obtained from the Instruction Code Table
in Appendix | in the usual way and the $A5 is obtained from the Indexed
Addressing Modes Table, taking RR to be 01 for the Y register.

The section of the table dealing with constant offset indexed addressing
deserves a closer look. When writing assembly language the offset can be in
therange-32768 to + 32767 but always to include a 16-bit two’'s complement
offset would be very wasteful of time and memory. Most constant offset
indexed addresses are of the form 0,X or 4,X, that is the offsets are usually
small. For this reason the machine code form of the constant offset indexed
address depends on the size of the offset. If the offset is zero or in the range
-16 to + 15 it can be included into the post byte giving a very fast, very short
instruction. If it is in the range -128 to + 127 the offset is too large to be
included in the postbyte and so it has to be stored in the next memory location
giving the resulting indexed instruction the following form
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machine code | post byte | 8 bit offset |

Iftheoffsetisintherange -32768t032767 then thereis nochoice but to follow
the offset with two memory locations holding a full 16-bit offset. This gives
the indexed instruction the following form -

machine code | post byte | offset 1 | offset 2|

{where offset 1 holds the most significant byte and offset 2 holds the least
significant byte.) Notice that a constant offset indexed addressing mode
instruction can occupy as little as two memory locations or as many as five if
the machine code itself occupies two of them. Also notice that there is more
than one way to write an instruction involving a small offset. For example,
LDA 0,X can be assembled as a zero offset instruction into two bytes, as a
five-bit offset instruction in two bytes, as an eight-bit offset in three bytes or
even as a 16-bit offset in four bytes! In most cases a good assembler will
choose the most economical form of any indexed addressing mode and leave
the programmer to worry about more interesting things.

Direct addressing and the DP register

The only addressing register yet to bedescribed is the DP or ‘Direct Page
register’. When direct addressing was firstintroduced it was described as a
method of addressing memory from0 to 255. The question is why should the
256 memory locations starting at zero be so favoured by direct addressing?
The answer is obviously that a direct address is only eight bits long and this
givesarange of 0 to 255. But thisis missing the pointthatan addressis a 16-bit
number, and so to select one memory location the eight bits specified in direct
addressing are extended to 16 bits by adding eight zeros. In other words -

LDA>$31

isinterpreted asaninstruction toload the A register from $0031. (Recall that
> is used to indicate direct addressing - see Chapter Four, “Changing the
BASIC assembler into a two-pass assembler”.) The $00 thatis written in front
of the direct addressisin fact stored in the DP register. In other words, the DP
register holds the most significant eight bits of a direct address. If the DP
register was loaded with something other than $00 then a direct address
would specify a memory location outside the range O to 255. There isn’t a
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LDDP instruction and so the only way to modify the DP register is by the TFR
or EXG instructions. For example, following

LDA #504
TFR A,DP

the DP register contains $04 and any direct addresses referto the range $0400
to $04FF. In other words an instruction like STA > $32 will store the contents
of the A register in memory location $0432, the most significant eight bits
coming from the DP register and the least significant eight bits coming from
the direct address.

This use of the DP register allows direct addressing to be used to access
any 256 byte block of memory starting at an address of the form $XX00 where
$XX is stored in the DP register. The DP register can significantly reduce the
amount of space thata program takes up in memory and can even make it run
a little faster but these are not normally considerations that trouble the
Dragon assembly language programmer. The best advice is to leave the DP
register alone as the BASIC ROM occasionally uses it!

Adding the addressing registers to the BASIC assembler

There are three parts to adding the addressing registers to the BASIC
assembler - the 16-bit register instructions such as LDY etc, indexed
addressing modes and the EXG and TFR instructions. Adding the rest of the
16-bitregister commands is simply a matter of adding the appropriate DATA
statements and making allowance for 16-bit immediate data (as for the D
register}. Adding the indexed addressing modes is a little more tricky in that
there are so many different forms to indexing. To keep things as simple as
possible only 16-bit constant offset, accumulator offset and auto
increment/decrement indexed addressing will be implemented. Thus the
BASIC assemblerignoresindirection and P Crelative addressing. This is not
too much of a restriction in that both forms are best left for more advanced
programming. Notice also that the only form of constant offset that is allowed
is 16-bit offset. This means that instructions like LDA 0,X that could be
assembled into two memory locations will in fact takes four but this waste of
space is worth the simplification it brings to the BASIC assembler. The
instructions EXG and TFR can be adding by included their DATA statements
and extending the way that the address field is handled to allow for
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instructions like EXG A, B. Which registers are to be exchanged or transferred
is indicated by the byte following the machine code for the instruction
according to the following table -

D
PC

0 X=1 Y
5 A=8 B

where the code for the source register is stored in the most significant four
bits and the code for the destination register is stored in the least significant
four bits. So, for example, TFR U,S would assemble to -

$1F $34

where $1F is the machine code for TFR and $34 is the code for the U register
($3) and the S register ($4) is indicated in the table given above.

1 REM BASIC ASSEMBLER V9.1

81 DATA LDX,&HS8E,&H9E,&HAE,&HBE,-1

82 DATALDY,&H108E,&H109E,&H10AE,&H10BE,-1
83 DATA LDS,&H10CE,&H10DE,&H10EE,&H10FE,-1
84 DATA LDU,&HCE,&HDE,&HEE, &HFE,-1

85 DATA STS,-1,&H10DF,&H10EF,&H10FF -1

86 DATA STU,-1,&HDF,&HEF,&HFF,-1

87 DATA STX,-1,&H9F,&HAF,&HBF,-1

88 DATASTY,-1,&H109F,&H10AF,&H10BF,-1

89 DATACMPS,&H118C,&H119C,&H11AC,&H11BC,-1
90 DATA CMPU,&H1183,&H1193,&H11A3,&H11B3,-1
91 DATA CMPX,&H8C,&HIC,&HAC,&HBC,-1

92 DATA CMPY,&H108C,&H109C,&H10AC,&H10BC,-1
93 DATA LEAS,-1,-1,&H32,-1,-1

94 DATALEAU,-1,-1,&H33,-1,-1

95 DATALEAX,-1,-1,&H30,-1,-1

96 DATA LEAY,-1,-1,&H31,-1,-1

97 DATA ABX,-1,-1,-1,-1,&H3A

98 DATA EXG,&H1E,-1,-1,-1,-1

99 DATA TFR,&H1F,-1,-1,-1,-1

199 DATAZZZ,-1,-1,-1,-1,11
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5000 IF M$="EXG” OR M$="TFR” THEN GOSUB 5100 ELSE
GOSUB5500

5100 FOR K=J TO LEN(AS$(I))
5110 IF MID$(A$(1),K,1)="," THEN GOTO 5130
5120 NEXTK

5130 L$=MID$(A$(1),K-2,2)
5140 GOSUB 5200

5150 AF$=L$

5160 L$=MID$(AS$(1),K+1,2)
5165 IF RIGHT$(L$,1)=" “ OR LEN(L$)=1 THEN L$="
"+ LEFTS$(LS,1)

5170 GOSUB5200

5180 AF$="&H"+AF$+L$
5185 TYPE=1

5190 RETURN

5200 IF L$ =" D” THEN L$="0"
5210 IFL$="X" THEN L$="1"
5220 IFL$="Y"THEN L$="2"
5230 IFL$ =" U” THEN L$="3"
5240 IFL$="S" THEN L$="4"
5250 IFL$="PC"THENL$="5"
5260 IFL$ =" A” THEN L$="8"
5270 IF L$ =" B” THEN L$="9"
5280 IF L$="CC” THEN L$="A"
5290 IF L$="DP” THEN L$="B"

5800 TYPE=3

5810 L$=MID$(AS(I),K-1,1)

5820 OF=0

5830 IFL$="A" THEN OF = &H86

5840 IF L$="B” THEN OF = &H85

65850 IF L$="D" THEN OF=&H8B

5860 L$=MIDS$(AS(I),K+1,1)

6870 IF L$="-" THEN L$=MID$(A$(l),K+2,1):0F = &H82
5880 IF L$="-" THEN L$ = MID$(A$(l),K+3,1):OF =&H83
5890 RF=0

5900 IFL$="Y" THEN RF=1

5901 IFL$="U" THENRF=2

5902 IFL$="S" THENRF=3
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5910 IF MID$(A$(1),K+2,1)=""+"THEN OF = &H80
5920 IF MID$(A$(1),K+2,2) ="+ +” THEN OF = &H81
5930 IF OF<>0 THEN AF$= STR$(RF + OF ):RETURN
5950 OF=&H89 + RF

5955 AF$ =" "+ AF$

5960 A=VAL(AFS$)

5970 1A=1

5980 IF A> =0 THEN RETURN

5990 AF$=STR$(65536 +A)

5995 RETURN

6035 IF IA=1 THEN PRINT #-PRT,HEX$(OF);

6241 IF TYPE=1 AND RIGHT$(M$,1)= “X" THEN TYPE=4
6242 IF TYPE=1 AND RIGHT$(M$,1} ="Y” THEN TYPE=4
6243 IF TYPE=1 AND RIGHT${M$,1) =“U” THEN TYPE=4
6244 IFTYPE=1 AND RIGHT$(M$,1)="S”" THEN TYPE=4

6255 IFIA=1THEN POKE P,OF:P=P+1:TYPE=4

Subroutine 5800 processes indexed addressing by making up the code for the
post byte in accordance with the Indexed Addressing Modes Table in
Appendix | Subroutine 5100 handles the coding of the byte following the EXG
or TFRinstructionindicating which pair of registers are involved. Notice that
subroutine 6000 has to be modified to printand POKE the correct number of
memory locations for a 16-bit constant offset.

The processing of the address fields for both indexed addressing and the
EXG and TFR instructions is very crude and doesn’t allow for blanks included
in theinstruction. So, forexample, you must write EXG A,B rather than EXG
A, B and LDA 0,X rather than LDA 0 ,X.

A general multiple-precision arithmetic subroutine

Before moving on to practical examples involving the Dragon’s sound
there is some unfinished business concerning multiple-precision arithmetic,
dealt with in Chapter Eight, that needs clearing up. To add two numbers
together, each @N bytes long, the firststored with its most significant byte at
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@NUM1 and the second stored with its most significant byte at @ NUM2 and
store the answer starting at @ANS use -

@ADD  LDB @N
LDX F@NUMI
LEAX  BX
LDY F@NUM2
LEAY  BY
LDU L@ANS
LEAU  BU
ANDCC  #$FE

@A LOOP LDA 0,-X
ADCA  0,-Y
STA 0.-U
DECB
BNE @ALOOP
RTS

To subtract the two numbers simply change the ADCA instruction to SBCA.
Notice the way that the three pointer registers X,Y and U are used with auto
decrement to 'step through’ the memory locations of each number. Also
notice the way that the C bit is cleared before the first add so that the ADC
instruction can be used to add the first memory locations without error. The
LEA instructions at the start of the program adjust the pointer registers to
point to one memory location before the least significant byte of the numbers
because the auto decrement happens before the effective address is used.

Using Dragon Sound

Although you might not think so from the limited beeping that BASIC
restricts you to, one of the most flexible features of the Dragon is its sound.
This section is concerned with generating sounds on the Dragon and
provides plenty of opportunity to use indexed addressing.

The Dragon'’s sound hardware is fully described in the companion volume
to this book, “The Anatomy of the Dragon”. However, the only essential
detail from the point of view of the following assembly language subroutines
is that, after a few operations concerned with initialisation, storing a number
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in memory location $FF20 will produce a voltage proportional to the number
which is fed to the speaker of the TV set via a UHF modulator. To be more
exact, only b7 to b2 of the location actually affects the output. What this
means is that you can produce a voltage that varies from 0 to the maximum
level in 64 equal steps by storing a number in the range 0 to 63 in bits b7 to b2
of memory location $FF20, Using just this simple factitis possible to create an
almost unlimited range of sounds.

There are three ways in which a steady tone can vary, in volume, in pitch
and in quality. All steady tones are the result of periodic waveforms. The
volume is related to the amplitude of the waves, the pitch to the rate of
repetition and the quality to the shape of the wave. Forexample, the purest of
all tones is a perfect sine wave (see fig 9. 1). A particularly rough sounding
tone is produced by the ‘sawtooth’ wave form (see fig 9.2). To produce the
sawtooth wave form all that is necessary is to store a series of numbers that
increase to some maximum and then reduce to zero and so on in location
$FF20. Obviously to create tones with a given quality it would be useful to
have a program that allowed the user to specify a series of numbersand then
hear the tone that they produce. An assembly language program to do this is
quite easy to write, the only difficult part being to find a good way of letting
the user specify the series of numbers. This is a task that is better suited to
BASIC and so in this section the use of assembler together with BASIC will be
examined.

The following assembly language program will take the series of values
storedin memory stertingat $7F00 and then repeatedly store themin memory
location $FF20 so that you can hear the quality of the sound they produce.
This part of the program is fairly easy but to provide flexibility, the program
has to allow the user to decide how many values are specified and how long
the delay should be between storing each value. The number of values is
stored at $7EFF and the delay at $7EFE. Also, if the program is going to be
used as part of a BASIC program for designing sounds, there should be some
way to determine how long the sound should last. The sound duration is thus
specified in memory location $7EFD in fiftieths of a second so that it can be
compared with the Dragon’s TIMER clock.

@SOUND EQU $FF20
@TABLE EQU $7F00
@NUM EQU $7EFF
@PITCH EQU $7EFE
@DUR EQU $7EFD
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MAX

0 Volts
Fig 9.1 A sine wave: the purest of tones

MAX

0 Volts

Fig 9.2 A saw tooth wave form — a rough sound
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@TIMER

@START
@REP
@LOOP

@INIT

@DELAY
@LDEL

EQU

BSR
CLR

CLRA
LDB
ASLB
ASLB
STB
BSR
INCA
CMPA
BLO
LDA
CMPA
BHI
RTS

LDA
ORA
STA
LDA
ANDA
STA
LDA
ANDA
STA
RTS

LDB
DECB
BNE
RTS

Chapter 9 The addressing registers - indexed addressing
$113

@INIT
@TIMER
LDX @TABLE

AX

@SOUND
@DELAY

@NUM
@LOOP
@DUR
@TIMER
@REP

$FF23
#8
$FF23
$FFO1
$$F7
$FFO1
$FF03
#$F7
$FFO3

@PITCH

@LDEL

Subroutine @INIT sets up the Dragon’s sound channel so thatyou can hear
the results of the program and @DELAY is a typical delay subroutine as
described in Chapter Eight. The rest of the program is concerned with moving
the values in memory to $FF20 over and over again for the correct duration.
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Notice the way that the A register is used to determine both which memory
location will be transferred to $FF20 and when all of the locations have been
transferred.

If you just EXEC this program you the results that you get will depend on
whatever happens to be stored in the memory locations used for its data. To
make the program usefulit has to be used with a BASIC program that sets the
data area to something appropriate. A machine code program can be saved
on tape using

CSAVE “filename”,start,end,transfer

THis command will save on tape the contents of memory from ‘start’ to ‘end’
{where "transfer’ = end - start). To save the sound program use -

CSAVE “SOUND”,&H7000,&H7030,&H31

After saving the sound program delete the BAS|C assembler using NEW and
typein the following program -

10 CLEAR 1000,&6FFF
20INPUT “"HOW MANY VALUES";V
30 IF V>255 THEN GOTO 20
40 POKE &H7EFF,V

50 FORI=1TOV

60 PRINT "VALUE “;I;"=";

70 INPUT A

80 IF A>255 THEN GOTO 60
90 POKE &H7F00 +1-1,A

100 NEXT |

110 INPUT “PITCH";P

120 IF P>255 THEN GOTO 110
130 POKE &H7EFE,P

140 INPUT “DURATION”;D
150 IF D>255 THENGOTO 140
160 POKE &H7EFD,D

170 EXEC &H7000

180 GOTO 110

then load the sound program using -
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CLOADM “SOUND",0

WhentheBASICprogram is RUN itwillusethe machine codetoletyou hear
the quality of the note produced by the list of values that you typein.

Altering the quality of thesound using the waveform workswell for steady
tones but most sounds contain a range of pitches. For example, a typical
‘laser zap’ in a space game will start off at a high pitch and descend to a low
pitch. This is fairly easy to do if the wave form is kept simple and the simplest
waveform to program is a square wave.

@LASER  BSR @INIT
LDB #1

@LOOP LDA #sFC
STA $FF20
BSR @DELAY
CLR $FF20
BSR @DELAY
INCB
CMPB #180
BNE @LOOP
RTS

@DELAY  TFR B,A

@DLOOP  DECA
BNE @DLOOP
RTS

The B register is used to determine the length of the delay produced by
@DELAY which increases by one each time through the program.

Steady tones and tones that change in pitch are not all that the Dragon can
produce. Many special effects are based upon “white noise’. White noise, a
sound rather like that made by a radio between stations corresponds to a
jumbled non-repeating wave form (see fig 9.3). To produce this sort of wave
formrequires a source of numbers thatare as good as random. The trouble is
that it takes rather too long to generate random numbersusing the BASIC
RND function. An alternative source of varied numbers that provides a fair
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MAX

0 Volts

Fig 9.3 White roise

approximation to a random sequence is the BASIC ROM! The following
program allows you to listen to the sound of BASIC -

@START  EQU $9000
@END EQU $B000
@WHITE  BSR @INIT
LDX $@START
@LOooP LDA X+
BSR @SOUND
CMPX L@END
BNE @LooP
RTS
@SOUND  STA $FF20
@DELAY  LDA #20
@DLOOP  DECA
BNE @DLOOP
RTS
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You can send different sections of the ROM to the sound generator simply
by changing @START and @END.

To give you someidea of how to use white noise the following program
generates a ‘gunshot’ effect by progressively fading down the white noise -

@START
@CRAK

@LooP

@VoL

EQU

BSR
CLR
LOX
LOA
ANDA
BSR
LOA
ANDA
BSR
LDA X+
ANDA
BSR
DEC
BNE
RTS
FCBO

$9000

@INIT
@VvoL
#+@START
X+

@VvoL
@SOUND
X+
@voL
@SOUND

@voL
@SOUND
@VoL
@LooP

Notice the way that the volume is faded down by ANDing the number with
the contents of @VOL.

Summary

1) There are five addressing registers -

the two 16-bit index registers X and Y
the two 16-bit stack pointers Uand S
and the eight bit direct page register DP

2) Both the index registers and the stack pointers can be used for
indexed addressing.

3) Thereare three indexed addressing modes -
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constant offset indexed
accumulator offset indexed
auto increment/auto decrement indexed

4) Indirect addressing specifies the address of the address that is to
be usedin an operation.

5) Indirection can be used with any indexed addressing mode apart
fromautoincrementandautodecrement by one.

6) Indirect extended addressing is also available and is implemented
asa special indexed addressing mode.

7) The DP register holds the most significantbyte of adirect address.

8} The TFR and EXG instructions can be used to move data between
allof the 6809's registers.

Micro projects

1) In Chapter Eight a delay subroutine was given that used the D register.
Re-write it using one of the pointer registers as a counter.

2) Write a short BASIC program that will use the SOUND subroutine
given earlier to produce white noise by POKEing random numbers in the
sound table (starting at @ TABLE). Use RND to generate the numbers (in the
range 0 to 63) and try experimenting with the values of pitch and duration.
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The Stack Pointers and Interrupts

A 'stack’ is one of the most useful ways of storing temporary data. The 6809
uses a stack to hold the return address following a JSR or BSR instruction. As
well as this implicit use of a stack by JSR and BSR instructions, assembly
language programs can make more direct use of stacks to store data. The
subject of stacks and how they are used brings us to a consideration of
‘interrupts’. Interrupts are the main way that a computer can be made to
respond to the outside world. In the case of the Dragon, the most interesting
use of interruptsis in providing the BASIC TIMER facility. In this chapter both
general stack operations and interrupts are described. The chapter closes
with an example of how an interrupt routine can improve the Dragon’s
keyboard.

A stack

A stack is simply an area of memory used in conjunction with a stack
pointer. The stack pointer contains the address of the item of data stored in
the stack. The normal method of storing data on the stack is via the PSH
{PuSH) operationwhich subtracts one from the stack pointerand thenstores
the data in the memory location that it points at. The normal method of
removing data from the stack is via the PUL (PULI) instruction which
accesses the item that the stack pointer is pointing at and then adds 1 to the
stack pointer. Notice that for a PSH operation the stack pointer moves down
one BEFORE the item is stored but for a PUL operation the stack pointer
moves up one AFTER the item has been accessed.
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The PSH and PUL operations on the stack produce a ’Last In First Out’ or
'LIFO’ effect. For example, if you push three numbers on to the stack in the
order 1, 2, 3 the stack will look like this (SP is the stack pointer):

SP <> | 3

Carrying out a PUL on the stack will retrieve 3 and leave the stack pointer
pointing as 2. Thus a second PUL will retrieve thevalue2 and a third, the value
1. The numbers wentin 1, 2, 3 but came out 3, 2, 1. Thatis, the last number
onto the stack came out first.

The 6809 stack pointers U and S

The fact that the S and U addressing registers are also stack pointers was
mentioned in Chapter Nine. The S register is so called because it acts as the
stack pointer for the ‘'System stack’. The system stack can be used to store
temporary data generated by a program but it is also used automatically by
the 6809 to store temporary data generated in the course of running your
program. Inthissense the systemstack has to be shared with the 6809. The U
register is so called because it acts as the stack pointer for the 'User stack’.
The user stack isn’t used by the 6809 and is free for any assembly language
program to use as required. The only trouble is that subroutines inside the
BASIC ROM may use the U stack, so applications program have to take care
if they are going to use any part of the BASIC ROM.

The basic stack operations on the S and U registers are PSHS, PULS,
PSHUand PULU. Each operation can PSH or PULany of the 6809'sregisters.
For example, the PSHS instruction take the form -

PSHS 'register list’

where 'register list’ is a list of the names of the registers to be pushed onto the
S stack. So -

PSHS X,Y,A
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will push the contents of the X, Y and A registers onto the S stack. The other
three instructions, PULS, PSHU and PULU, can also pull or push a list of
registers. For example,

PULS X,Y A

willrestore thevaluesthatwere pushed ontothe S stack by the PSHS X,Y,A
instruction to the X,Y and A registers - as long as nothing else has been
pushed onto the stack in the mean time. The only restriction on the register
list is that you cannot pull or push the S register onto the S stack nor the U
register onto the U stack.

You might be wondering about the order that the registers are pushed or
pulled. The order that you write the registers in the register list doesn’t affect
the order that the registers are pushed or pulled. For example,

PSHS X,Y
is the same as
PSHS Y, X

In fact the order that the registers are pushed on to the stack is strictly
predetermined by the following priority -

PC
UorS
Y

X
DP
B
A
cC

ONONHAWN=

From a list of registers that are to be pushed onto the stack the registers
corresponding to the lowest numbers are pushed first. For example, in

PSHS CC,A X
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the Xregister is pushed first, then the A register then the CC register. In other
words PSHS CC,A, X is the same as

PSHS X
PSHS A
PSHS CC

The order in which registers are pulled from the stack is the reverse of the
order in which they are pulled. That is, the registers in a register list will be
puiled so that the highest numbered registers are pulled first. So

PULS X,B,CC
is the same as

PULS CC
PULS B
PULS X

Apart from the PSH and PUL instructions, there are no other stack
operations. However, as the stack pointers are both general pointerregisters,
values on the stack can be manipulated using indexed addressing. For
example,

PSHSA
ADDA,S+

doubles the value in the A register by first pushing its value on the stack and
thenadding it backinto the A register. Notice the way that auto increment on
the S register returns it to its original value before the PSHS - thus ‘cleaning
up’ the stack. It is important that, if you use a stack to store temporary data,
you remove it and leave the stack as you found it. Otherwise you could find
some odd things happening. In particular, if you push more onto the stack
than you pull off the stack will eventually grow to occupy all of the memory!
Notice that itis in generalnecessary to allocate sufficient memory to a stack
so thatitdoesn’toverflowintoareas of memory that are beingused for other
purposes. In the Dragon the S stack is usually initialised by the system to be
just below the temporary string storage area used by BASIC.
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Subroutines and the system stack

Thetwo stack pointers U and S areidentical in their use apartfrom the way
that the 6809 automatically uses the system stack to store, among other
things, the return address following a subroutine call. Whenever you use
BSR or JSR the address of the next instruction is automatically stored on the
system stack. The action of an RTS instruction is to pull two bytes off the
stack and place themin the PC register which, if everything has gone to plan,
should return control to the instruction following the branch. In other words
RTS has the same effect as PULS PC. This use of a stack to store the return
address has the advantage that a subroutine can call another subroutine and,
because of the Last In First Out property of a stack, the return addresses
come back in the correct order. The only thing that can go wrong with this
mechanism is that the subroutine stores more on the stack than it takes off
and then the RTS instruction will simply pull rubbish off the stack with
predictable disastrous consequences.

Interrupts

The idea of an interrupt is so familiar to humans that it is hardly worth a
second thought. If you are reading a book and the telephone rings you would
have no difficulty in marking your place in the book, answeringthe phone arid
then, after the call is complete, returning to the marked place in the book as if
nothing had happened. Contained in this description are the essential
elements of allinterrupt handling. First there is a signal from the outside world
- the interrupt. As a result of this interrupt the current preoccupation is
suspended butenoughinformation isstoredtoenable the task to be restarted
after the interrupt has been dealt with. The interrupt is dealt with and then the
original occupation is restored.

The 6809 can respond to three different types of interrupt - the NMI
(Non-Maskable Interrupt), IRQ (Interrupt ReQuest) and FIRQ (Fast Interrupt
ReQuest). Each of these types of interrupt corresponds to a physical
connection to the 6809 chip inside the Dragon. A signal on one of these
connections indicates a request to interrupt the 6809 from whatever it is
currently doing. Exactly what happens following an interrupt depends on
which source caused the interrupt.

IRQ Following a signal on the IRQ line the 6809 completes the instruction

that it is carrying out, then it stacks all of the registers and jumps to the
location whose address is stored in $FFF8 and $FFF9. In other words, after
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stacking all the registers, the6809 executes a JMP ($FFF8). In the Dragon the
address $FFF8 is shifted by hardware down into the BASIC ROM at $BFF8
which contains theaddress $010C. This means thatan IRQ interrupt transfers
control to $010C. Details of what the Dragon uses the IRQ interrupt for will be
given later.

NMI Following a signal on the NMlI line the 6809 completes the instruction
that it is carrying out then it stacks all of the registers and jumps to the location
whose address is stored in $FFFC and $FFFD. in the Dragon the address
$FFFC is shifted by hardware down into the BASIC ROM at $BFFC which
contains the address $0109.

FIRQ Following a signal on the FIRQ line the 6809 completes the
instruction that it is carrying out and then stacks the PC register and the CC
register and then jumps to the location whose address is stored in $FFF6 and
$FFF7. Notice that in this case not all of the registers are stacked following a
FIRQ interrupt. It is this that makes it a fast interrupt. In the Dragon the
address $FFF6 is shifted by hardware down into the BASIC ROM at $BFF6
which contains $010C. The FIRQ is only used in the Dragon to detect the
presence of a ROM program cartridge.

3 Ingeneral, the6809’s interrupts can be used in a wide variety of ways but
the Dragon’s hardware has been designed to put interrupts to good use and
sotheyarededicatedtoasingle purpose. Inpractice, the only interrupt thatis
of any interest to the Dragon assembly language programmer is the IRQ
interrupt that is used to provide the BASIC TIMER function. A practical
example of how this interrupt can be used is given at the end of this chapter
but for now some of the 6809 instructions concerned with interrupts in
general will be described.

The RTl instruction

Thethreetypesofinterrupthave one thingin common they all save some
of or all of the registers on the system stack and then do an indirect jump
through a fixed location. The destination of the jump is a program usually
referred to as an ‘interrupt handler’. What exactly the interrupt handler does
dependsvery much on what caused the interrupt. For example, in the case of
the Dragon the IRQ handler adds one to the current value of memory
locations used for the timer. Once the interrupt handler has finished control
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has to be retumned to the program that was interrupted. This is done by using
the RTI (ReTurn from Interrupt) instruction which is to an interrupt what the
RTS instruction is to a subroutine. The RTI not only returns control to the
program that was interrupted, it also restores to their original registers any
values that were pushed onto the stack by the interrupt. If all of the registers
were pushed onto the stack then following an RTI the 6809 is back to its
original condition before the interrupt even if the interrupt handler used some
of the registers. However, if the interrupt only saved some of the registers,
then theinterrupt handler has to be careful not toalterany of theregisters that
are not going to be restored by the RTl instruction.

Condition codes and interrupts

The condition code register was introduced in Chapter Seven in
connection with the branch instructions. However, there are a number of
condition code bits that are concerned with interrupts and the way that the
system stack is used. The full format of the CC register is -

b7 b6 b5 b4 b3 b2 bl boO
E F H | N Z Vv C

TheH, N, Zand C bits have already been described in Chapter Seven. The Eor
Entire bit is used by theR Tlinstruction to discover how many registers were
pushed onto the stack by the interrupt and so how many registers should be
pulled off the stack before returning control to the program that was
interrupted. If the E bit is 1 then all {i.e. the entire set) of the registers were
pushed and so the RTI results in

PULS CC,A,B,DPX,Y,U,PC
If the E bitis 0 thenonly the CC and PC register are pulledfrom the stack -
PULS CC,PC
Thereis a subtle pointhere. Asthe RTlinstruction pulls the CC register off the
stack, which value of the E bit does it take notice of? The answer is that it first
restoresthe CC register by pulling it off the stack and then it examines the E bit

to discover how much more has to be pulled off the stack. This means that an
interrupt handler can change the CC bits as much as it likes and the RTI
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instruction will get it right. You can in fact manipulate the E bit stored on the
system stack to change the action of an RTl instruction for special purposes
but take great care that you pull the right things of the stack. For example,
suppose an IRQ handlerdidn’t use any of the registersthat the main program
was using. then you could save the unnecessary ‘unstacking’ of the entire
register set by -

PULS A
ANDA #$7F
LDS7,S
PSHSA
RTI

Thefirstinstruction pulls the value that would be returned to the CC register
following an RTl and places itin A. The E bitis then set to 0 (by ANDing with
$7F), the stack pointer is adjusted to get rid of the unnecessary register values
that were stored and then the new value for the CC is PSHed into the correct
position on the stack. The following RTI will now only restore the CC and PC
registers because the E bit is 0. Thissortof trickis onlyworthusingwhen your
are desperate to make a program run faster and it can lead to programs that
are very difficuit to debug.

The | and F bits are both concerned with stopping interrupts having any
effect. The6809 willonly takeany notice of IRQsignalsif the I bitis0. Thus the
| bit can be used to mask the effects of interrupts, Setting and clearing it can
be used to control when an interrupt is allowed. The instruction

ANDCC #$EF
clears the | bit and

ORCC #5$10
setsitto 1. The F bit will similarly disable FIRQ interrupts. I f the F bit is 0 then
the 6809 will take notice of signals on the FIRQ line butit willignore themis Fis
1. The instruction -

ANDCC #$BF

willclear the F bit and
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ORCC #$40
setsitto 1.

Apart from enabling the programmer t o decide when interrupts should be
allowed to happen, the | and F bits are also used by the interrupts themselves
to stop the difficulty of an interrupt occurring during the operation of an
interrupt handler! The exact action of the IRQ interrupt on the CC register is:

1) The E bitis set to 1 and the CC register is pushed on the system
stack

2) Thel bitis set to 1 to mask out any further IRQ interrupts

This means that following an IRQ interrupt the interrupt handler will not be
interrupted by IRQ again but it will be interrupted by an FIRQor a NML. In this
sense both FIRQ and NMI have a higher priority than IRQ.

The exact action of a FIRQ interrupt on the CC register is:

1) The E bits is set to 0 and the CC register is pushed onto the
system stack

2) The F and bits are boh set to 1 to mask any further FIRQ or IRQ
interrupts

Thus a FIRQ interrupt handler will not be interrupted by another FIRQ or a
subsequent IRQ unless the CC register is altered. This once again establishes
FIRQ as having a higher priority than IRQ. The NMI interrupt behaves like the
IRQ interrupt except that it sets both the F and | bits so masking any other
interrupts apart from another NMI. A NMI cannot be masked hence its name
and in this sense it is a higher priority interrupt than FIRQ and IRQ.

In general there are two ways of stopping an IRQ or FIRQ interrupt. You
can stop itat source by altering the device that producesit, or you can set the
CC register so as to mask the interrupt. The device that causes the interrupt
usually has to be reset in some way or another before it can cause another
interrupt. Resetting, and any other operations that the external device
requires, are all the responsibility of the interrupt handler. Indeed itis possible
that more than one external device can cause an interrupt and in this case the
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first job that the interrupt handler has to tackle is to find out what caused the
interrupt. As you can imagine, in general use interrupts can become very
complicated.

The instructions CWAI and SYNC

The normal use of an interrupt signal is to stop the 6809 from what it is
doing and transfer its processing powers to a different and perhaps more
urgenttask. However, there are occasions when the 6809 has nothing better
to do than wait for an interrupt to occur. The two instructions CWAI (Clear
and WAt for Interrupt) and SYNC (SYNChronise) are both concerned with
making the 6809 suspend its operation until something causes an interrupt.
The CWAI #$XX instruction ANDs the CC register with the immediate byte,
stacks all of the registers on the system stack and then waits for an enabled
interrupt. The immediate byte can be used to select which interrupt signal will
be enabled. Notice that the CWAI instruction will cause even the FIRQ
interrupt handler to be entered with all the registers stored on the stack. The
CWAI instruction can save time in handling interrupts because when the
interrupt occurs the registers are already stacked.

The second ‘wait for an interrupt’ type of instructionis SYNC. A SYNC
instruction causes the 6809 to halt processing and wait for an interrupt to
occur. If a non-masked interrupt occurs then the usual sequence of register
stacking appropriate to the interruptis completed and the interrupt handler is
entered. In this case the SYNC instruction causes the 6809 to wait for an
interrupt which is then processed as normal. However, if a masked interrupt
occursthen instead of being ignored it removes the 6809 from its 'sync’ state
and allows it to carry on processing instructions. In this way masked
interrupts can be used to synchronise the 6809 to external events. An
example of the use of the SYNC instruction is given as a micro project at the
end of the chapter.

Software interrupts - SWI, SWI2, SWI3

It may seem strange but the idea of an interrupt is so useful that the 6809
has threeinstructions that will force the 6809 tobehave asif it had received an
external interrupt signall SWI (SoftWare Interrupt), stacks all the registers,
sets the | and F bits to mask external interrupts and then cause an indirect
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jump to $FFFA. In the Dragon this address is moved using hardware down to
$BFFA. The SWI2 and SWI3 also stack all ofthe registers but they don’t mask
external interrupts. SWI2 causes an indirect jump through $FFF4 which the
Dragon’s hardware has moved down to $BFF4 and the SWI3 instruction
causes an indirect jump through $FFF2 which the Dragon’s hardware has
moved down to $BFF2.

The SWIl instructions are generally used to implementadvanced or special
features such as calls to operating systems, machine code debuggers (see
Chapter Eleven) and so on.

Adding stack operations to the BASIC assembler

The instructions RTI, CWAIT, SYNC, SWI, SWI2 and SWI3 can all be
added to the BASIC assembler simply by including the appropriate DATA
statements. However, to accomodate PSH and PUL the handling of the
addressfield has to be extended once again. Both PSH and PUL use the byte
following their machine code to store the list of registers to be pushed or
pulled according to the following table:

PC S/U Y X DP

B A cc
128 64 32 16 8 4 2

1

The value stored in the following byte is the sum of the codes corresponding
to each register to be pushed or pulled. So, for example, the machine code
for-

PSHS PC,X,A

$34 $92

where $34 is the machine code for PSHS and $92 =128 + 16 + 2 is derived
from the above table.
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1 REM BASIC ASSEMBLER V10.1

100 DATA PULS,&H35,-1,-1,-1,-1

101 DATAPULU,&H37,-1,-1,-1,-1

102 DATA PSHS,&H34,-1,-1,-1,-1

103 DATA PSHU,&H36,-1,-1,-1,-1

104 DATARTI,-1,-1,-1,-1,&H3B

105 DATA CWAIT,&H3C,-1,-1,-1,-1

106 DATASYNC,-1,-1,-1,-1,&H13

107 DATA SWI,-1,-1,-1,-1,&H3F

108 DATA SWI2,-1,-1,-1,-1,&H103F

109 DATA SWI3,-1,-1,-1,-1,&H113F

5000 IFM$="EXG"” OR M$="TRF” THEN GOSUB 5100
5005 IF LEFT$(M$,3)="PUL"” OR LEFT$(M$,3)="PSH” THEN
GOSUB5300ELSE5500

5300 A=0
5310 FOR K=J TO LEN(AS(I))
5320 L$=MID$(AS(1) K,2)
5330 IFL$="PC" THEN A=A +128:K=K+1
5340 IFL$="DP”" THENA=A+8:K=K+1
5350 IFL$="CC”" THENA=A+1:K=K+1
5360 L$=MID$(AS(I),K,1)

5370 IFL$="A"THENA=A+2

5380 IFL$="B"THENA=A+4
5390 IFL$="X" THEN A=A +16
5400 IFL$="Y" THEN A=A +32

5410 IFL$="S"ORL$="U"THENA=A+64
5420 NEXTK
5430 AF$=STR$(A)

5440 TYPE=1

5450 RETURN

The new subroutine 5300 processes the address field followinga PSH or a
PUL and makes up the value to be stored in the memory byte following the
machine code for the instruction according to the previous table.
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The Dragon’s use of interrupts

We already know that the Dragon’s hardware moves all of the memory
locations used by the interrupts down into the BASIC ROM but what hasn’t
yet been mentioned is that you can change the destination of an interrupt.
Each of the 6809’s interrupts causes an indirect jump through memory
locations in ROM down to a series of memory locations in RAM. These RAM
memory locations, for those interrupts that are used, contain JMP
instructions that finally transfer control to the interrupt handlers. The
importantpointis that as the JMP instructions are storedin RAM they can be
changed and so, interrupts can be intercepted on their way to their interrupt
handlers. This situation is best summarised by the following table:

Interrupt indirects indirects contents
through to

sSwi3 $BFF2 $100 0

SWi2 $BFF4 $103 0

FIRQ $BFF6 $10F JMP $B469

IRQ $BFF8 $10C JMP $9D3D

Swi $BFFA $106 JMP $D521

NMI $BFFC $109 0

Reset $BFFE $B3B4 -

The meaning of this table should be clear but, to take an example, an IRQ
interruptindirects though $BFF8 which contains the address $010C. Thus,
following an IRQ, control passes to $010C which contains the instructions
JMP $9D3D which finally transfers control to the interrupt handler. Notice
that the table contains an entry for ‘Reset’ which indicates where the 6809
transfers control to when the reset button is pressed. Some of the 6809’s
interrupts are not used on the Dragon and this is indicated by the memory
locations in the table containing zeros. These unused interrupts could be put
to use by applications programs but there is always the possibility that future
Dragon systems programs will use one of them with resulting conflict.

The only twointerrupts that the standard Dragon uses are FIRQ and IRQ.
The FIRQ interrupt is used by a cartridge ROM to gain control from BASIC
and startits own program running. The IRQ interrupt is used to produce the
1/50th of a second clock. The way that thisworksis that the TV frame sync
pulseis connected to one of the PIAs which causes an IRQ interrupt every
1/50th of a second. (For more information see “The Anatomy of the
Dragon”.)
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By intercepting the IRQinterrupt, an assembly language program can carry
outafixed action every 1/50th of a second orso. For example, an auto repeat
facility can be added to the Dragon’s keyboard by setting memory locations
$150 to $159 to $FF. While a key is held down each setting of the memory
locations cause a single repeat. If the IRQ interrupt is intercepted by an
assembly language program that sets the memory locations to $FF and then
passes control to the original interrupt handler, then everything will function
normally but the keyboard will auto-repeat every 1/50th of a second.

@IRQ EQU $10D

@AUTO  ORCC #$10
LDX @RQ
STX @TIM
LDX £@REP
STX @IRQ
ANDCC $SEF
RTS

@REP LDA $SFF
LDX 450150

@LOOP  STA 0,X+
CMPX #$15A
BNE @LOOP
LDX @TIM
JMP 0,X

@TIM FDB 0

The first part of the program @AUTO first disables the IRQ interrupts and
then changes the JMP $9D3D to JMP @REP. The @REP subroutine simply
sets the memory locations to $FF and then jumps to the original interrupt
handler. The address of the original interrupt handler is stored in @TIM and
the JMP 0,X instruction transfers control to the the address stored in X. To
use this program simple EXEC it once afterassemblingit and, every 1/50th of
a second, it sets the memory locations to $FF and produces an auto repeat.
You may find that 1/50th of a second is a little fast for an auto repeat and so
the final version of the program produces a repeat every 1/2 of a second by
counting the number of interrupts between each setting of the memory
locations. The following section needs to be added to the @AUTO part of the
previous program:
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@REP LDX @TIM
DEC @COUNT
BEQ @SET
JMP 0,X
@SET LDA 4SFF
LDX 450150
@LOOP  STA 0.X+
CMPX #$15A
BNE @LOOP
LDA #25
STA @COUNT
LDX @TIM
JMP 0,X
@TIM FDB ]
@COUNT  FCB 25

Even with thisimprovement the auto-repeat program needs some work to be
useful. Ideally a key should not auto repeat until it has been held down for
some minimum time and then it should repeat at quite a fast rate.

Summary

1) The 6809 has two stacks - the system stack using the S register
as the stack pointer and the User stack using the U register as the
stack pointer.

2) The system stack is use automatically to save the return address
following a BSR or JSR instruction and during interrupts to save the
values in the registers.

3) Of the three 6809 interrupts only the IRQ interrupt that is used to
produce the system clock is likely to be useful to the assembly
language programmer working with an unmodified Dragon.
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Micro project
1) Use the SYNC instruction to ensure that the squash program given in

Chapter Eight only changes the display once every 1/50th of a second. Hint-
you only need to modify the @DELAY subroutine.
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Assembly Language Style and Practice

Once you have mastered the details of 6809 assembler the only way toextend
your skill is to write programs. As with nearly all aspects of computing,
practice is essential. Assembler isa powerful language and if a program using
a good method doesn’t work fast enough in assembler then there is nothing
you can do but get a better computer! Although assembier is powerfut you
still have to know how to solve the problem that you are interested in and in
some ways this can be more difficult in assembler than in a high level
language. If you have no idea of how to go about solving a problem using
BASIC then you have little chance of getting any further with assembler.
Despite the fact that there is no way of becoming a proficient assembly
language programmer without practice, there are a few guidelines and
suggestions that are worth knowing about.

Subroutines

It is well known that the best way to write a large program is to break it
down into a collection of smaller programs. It is almost impossible to think of
a large program without dividing it down into sections that perform specific
tasks and it makes sense to write such a program in a way that reflects these
divisions. In BASIC and in assembler the subroutine is the standard way of
writing the small ‘modules’ that fit together to produce a finished program.
The use of subroutines in assembler is all the more important because of the
very limited operations that the language offers you. In principle whenever
youwrite an assembly language programyour objective should be to build up
a collection of subroutines that carry out more complex operations. This
collection of subroutines can not only be use to implement the current
program they form a programmer’s ‘inheritance’ to be used in future
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programs. For example, if you are writing a program that needs to carry out
any amount of arithmetic then you need to write some subroutines to carry
out arithmetic. Perhaps less obviously, if you are writing a games program or
agraphicsprogramyoushouldfirstwritesubroutinestoplotasingle pointina
given colour and then build up subroutines that plot the shapes that you are
using. In this example, notice that the shape drawing subroutine would use
the dot plotting subroutine to produce the shape. This is typical of the way
that assembly language subroutines that do complicated things usually rely
on simpler assembly language programs to do the ‘dirty work’ for them.
Another advantage of using subroutines as the building blocks of larger
programs is that, in principle, any errors in the program should be isolated
within a subroutine and so any changes that are necessary to put the error
right should be isolated to a small area of the program. However, this neat
theory of isolated errors will only work if you follow a strict method of writing
subroutines so that they don’t interact in ways that you never intended.

Surprisingly the same problem of unwanted subroutine interaction occurs
in BASIC. For example, if a subroutine uses a variable with the same name as
avariable used by another subroutine then the using either of the subroutines
is likely to alter what the other one does. In the same way it is important that
assembly language subroutines don’t alter values in memory and in registers
that other subroutines are relying on to stay the same. This can be achieved
by all subroutines using memory locations to store any input values to the
subroutine, any output values that are produced, and any temporary or
permanent variables created in the process. This is the technique used in the
squash program in Chapter Eight. The use of RAM storage for all data allows
any subroutine to use all of the registers for its internal calculations. However,
there is an alternative approach which involves requiring all subroutines to
not change values stored in any register. This sounds like an impossible
requirement. How can a subroutine work without changing any of the
registers? The answer is that the firstinstruction of the subroutine pushes all
of the registers onto the system stack and the last instruction pulls them all off
again. In this way every subroutine saves the register values on entry and
restores them after use. For example, a delay subroutine using the first
method could be written as follows:

@DELAY  LDX @TIME

@DLOOP  LEAX -1,X
BNE @DLOOP
RTS

@TIME FDB 0
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where the memory location @ TIME is used to specify the desired delay before
calling the subroutine. Notice that the X register is freely used by this
subroutine and there is no attempt to restore its original value at the end of the
subroutine. The second method of writing the subroutine would give:

@DELAY  PSHS CCX
LDX @TIME

@DLOOP  LEAX -1,X
BNE @DLOOP
PULS CcCXx
RTS

@TIME FDB 0

The only difference is that the CC and X register are pushed onto the system
stack and restored at the end of the subroutine. As the X and the CC register
are the only two registers used by the subroutine we can guarantee that the
subroutine produces its effect, i.e. a delay, without changing the values
stored in any register.

Whichever method you use to isolate undesirable side effects of one
subroutine on another it is important that you stick to it because mixing the
two approaches is certain to cause more confusion than no method at all!

Once you have successfully isolated subroutines there remains the
problem of how to pass data to and from subroutines. The simplestmethodis
the one that has beenused in all the previous examplesi.e. the use of memory
locations following the subroutine. However this does have a number of
drawbacks when it comes to more advanced applications where machine
codesubroutinesare being used by assemblylanguage programs. In this case
it may be difficult to discover the address of the memory location used to
store thedata. One solution is to use the system stacktopassinformation in a
way that doesn’t involve knowing a address. For example, the delay
subroutine could pull the value of the X register from the system stack instead
of using a fixed memory location. However, you have to be careful to
remember that the return address is stored on the system stack aftera JSR or
BSR instruction.
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@DELAY  LDX -2,S
@DLOOP  LEAX -1,X
BNE @DLOOP
RTS

The @DELAY subroutine now requiresthe delay value to be pushed onto the
stack before it is calied

LDY #51000
PSHS Y

BSR @DELAY
LEAS 2,8

Notice that after pushing the value $1000 on the stack the BSR instruction
automatically pushes the return address in front of the value. This is the
reason that the @DELAY subroutine hasto take its data from -2, S rather than
0,S. Also notice that after using the subroutine the stack has to be cleaned up
either by pulling a two byte value off the stack or, as shown above, simply by
subtracting 2 from the S register. The topic of using the stack for temporary
storage in conjunction with subroutines is too large a subject to be pursued
anyfurtherhere. (Forfurtherinformation see “The6809 Companion” by Mike
James, published by Babani, 1982.)

The role of BASIC in assembler

The previoussection concerning the use of subroutines completelyignores
one of the most important sources of machine code subroutines - the BASIC
ROM. The BASIC ROM contains subroutines that are used to implement
everything that you can doin BASIC. In other words, it contains subroutines
to make sounds, read the joystick inputs, plot lines do arithmetic and so on.
The only problem is that there isn't a complete list describing what
subroutines are to be foundwhere, and, perhaps worse, there is noguarantee
that any of the subroutines will remain in the same place in future versions of
the Dragon’s ROM. The details of some of the subroutines that are officially
given by Dragon Data can be found in Appendix V. Itisfairly safe to use these
subroutinesbut any others may carry the risk that your software won’t work
onfuture Dragons. To find out about other subroutinesthereis no alternative
but to use a disassembler (see later) and fathom out the way that the BASIC
ROM works for yourself.
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BASIC can also be useful to the assembly language program in another
way. Itis often worth writing a program or at least part of aprogram in BASIC
to check that your ideas work before converting it to assembler. You will find
many examples of BASIC programs doing jobs that are better suited to
assembly language in “The Anatomy of the Dragon”.

As well as being useful for checking that a programming idea works before
committing yourself to assembly language, there is no avoiding the fact that
BASICis better than assembler for some tasks. In Chapter Nine the one of the
sound producing programs was written to be used in combination with a
BASIC program that provided it with data by prompting the user in a way that
would have been very tedious to write in assembler. Where speed isn’t
required then BASIC is generally to be preferred. For this reason the ideal way
to write a program is to use a mixture BASIC and assembler.

As well as the method of using BASIC with assembler illustrated in Chapter
Nine (involving the CLOADM and EXEC instructions) there is also the USR
function method. The Dragon’s machine code USR function is best reserved
for occasions when an assembly language program needs to be used as part
of a calculation - and this is not as often as you might expect. For example, in
the unlikely event that you had invented a faster way of working out a square
root you might write an assembly language program to do just this. In this
case the correct way to use it from BASIC would be via the USR function. A
machine code USR function must first be defined by -

DEFUSRn =XXXX

where n is a number in the range 0 to 9 used to identify 1 of 10 possible
machine code functions and XXXX is the address of the start of the machine
code in question. Once a USR function has been defined it can be called in the
same way that any other function can - simply by using its name. If the
improved square root machine code program started at $7000 then
following -

DEFUSRO = &H7000

you could use the function thus -

197



Language of the Dragon
A=USR00(4}

(Notice that the DEFUSRO identifies the function using only a single digit but
the function itself uses two digits, i.e. USROO rather than USRO0.) This
function would find the square root of four and place the resultin the BASIC
variable A. You can use a machine code functionin exactly the same way that
you use an ordinary function. For example,

A=2*USR00(X*4 +2) +4

is perfectly valid. This adequately describes how a machine code USR
function can be called from BASIC but itsays nothing about howthe machine
code functionitself gets its input value or what it should do with its result to
ensure that it is stored in the variable A.

When BASIC transfers control to a machine code USR function it sets the
X register to point to an area of memory known as the 'floating point
accumulator’ or ‘FAC’. This holds the result of evaluating the expression
contained within the brackets when the function was called. The only trouble
is that this value is stored in a representation that would take too long to
explain in any detail here called ‘floating point binary’. The essence of this
representation is that a number is stored in five bytes, the first of which (the
one that the X register points at) being the binary exponent+128. The next
fourbytesi.e. X+ 1,X +2, X +3 and X + 4 contain the mantissa in normalised
form. Inthe FAC a sixth byte isalso stored at X + 5 which isa copy of the most
significant byte of the mantissa but with b7 set to 1 if the number is negative
and b7 set to 0 if the number is positive. For a machine code function to do
anything useful with this floating point number would be rather complicated
soitisusualto convertitto a 16-bitinteger using the machine code subroutine
stored at $8B2D which returns the value of the FAC in the D register. To
convert a value in the D register back into floating point form use the
subroutine at $8C37 which will leave the valueinthe FAC. Astheresultthatis
returned by the USR function is the value thatis stored in the FAC before the
final RTS returnscontrol to BASIC, subroutine $8C37 can be used to store
the correct floating point value when the USR function has finished its
calculations.

As an example, consider how a simple subroutine to multiply a 16-bit
number by two could be implemented as a USR function -
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@FACINT  EQU $8B2D
@INTFAC  EQU $8C37
@TWo JSR @FACINT
ASLB
ROLA
JSR @INTFAC
RTS

{This subroutine multiplies by 2, by doing a singleleftshifton the A and B
registers.) Once you have assembled this subroutine you can test it by typing
in-

1 DEFUSRO = &H7000
2INPUTA

3PRINT USROO(A)
4G0OTO2

Youcould try using the function inevenmore complicated expressionsjustto
check that everything works as predicted.

If you want to access any variables, strings or arrays using a machine code
USR function then it is worth knowing that the VARPTR function will leave
the address of any variable in the FAC. For example, USRO1(VARPTR(” A$))
leaves the address of the first byte of the string description in the FAC (see
“The Anatomy of the Dragon”).

Assemblers and other packages

Now thatyou have worked yourway though this brief introductory ook at
Dragon assembler you must tackle some assembly language projects to
develop your skills yet further. Before you can do this, however, it is worth
investing in a good quality assembler. Two commercial assemblers are
described in Appendix Il and now that you have experience of how an
assembler works via the BASIC assembler you should be in a position to
evaluate such software for yourselfl However, if buying a ready made
assembler seems like the easy way out then you might like instead to tackle
the large project of writing your own assembler (in assembler!) taking the
BASIC assembler as your model. In case you choose this course, and for
general interest, it is worth pointing out some of the features that have been
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left out of the BASIC assembler that are commonly found in commercial
assemblers.

Theidea of alabel to represent an address is usually taken one stage further
toinclude ‘address’ or ‘label expressions’. For example, if @ TABLE is a label
that marks the start of a sequence of memory locations that are being used to
store data, then it is often the case that a particular instruction always needs
to make reference to say the second location in the table. Using a label
expression this would be written as @TABLE+ 1, in other words, the
memory location whose address is given by adding one to the address value
that corresponds to @ TABLE. Notice that thisexpression, i.e. @ TABLE+ 1,
is evaluated by the assembler and used as the addressinan instruction. In
contrast the seemingly similar

LDX +@TABLE
LEAX 1,X

causes the 6809 to work out the same address only when the machine code
program is finally run. It is this potential for confusion that makes it wise to
leave address expressions alone until you are completely happy with the
simpler aspects of addressing.

Commercial assemblers also offer a wider range of constants than just the
hex and decimal numbers that the BASIC assembler will handle. Most will
allow you to specify numbers in binary and will automatically convert
characters to their corresponding AS Cll codes automatically. For example, in
the DASM assembler -

LDA #IA

will load the A register with the ASCll code for “A” into the A register. Also all
commercial assemblers will automatically convert negative numbers used in
address expressionsinto the correct two’s complement form. For example,

LDA #-1

will load the A register with the two’s complement representation of -1 i.e.
$FF. This facility is not available not in the BASIC assembler as it stands.
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All of these features and more could be added to the BASIC assembler but
it would still not be up to the job of assembling large programs because of the
time it takes to assemble each line.

Aswell asa goodefficientassembleryou also need some way of debugging
a machine code program. The most usual way is to use a machine code
monitor program such as DEMON from Compusense or DREAMBUG which
is contained on the ALLDREAM cartridge from Dragon Data. A monitoris a
program that allows you to examine areas of memory, discover the contents
of registers and trace the execution of a program instruction by instruction.
Whenever a machine code program fails to work, it is either a matter of some
very obvious mistake needing to be put right or the machine goes quiet and
you are left to ponder what might have gone wrong! In thissecondsituationa
machine code monitor is the only way that you can check the misbehaving
program instruction by instruction to test that it does what you expect it to.

Another very useful program for any assembly language programmer is a
disassembler. This is in essence an assembler working backwards! It takes
the codes stored in memory and translates them back to the assembly
language mnemonics that represent them. In principle, using a disassembler
on achunk of machine code will produce an assembly language program that
canbe understood. In practice, trying to understand any assembly language
program that you didn’t write is very difficult and the output from a
dissasembler doesn’t include any friendly address labels indicating what the
code is used for or what any data locations hold. However, disassembling
your machine’s BASIC ROM is one very good way of obtaining examples of
assembly language programming to study. Many an education in assembly
language has come about because of the need to disassemble BASIC ROM!
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Instruction Codes

Instruction Addressing Modes 53210

Forms Imm  Dir Ind Ext mh HNZVC
ABX 3A
ADCA 89 99 A9 B9 a a aa a

ADCB Cc9 D9 E9 F9 a a a a a

ADDA 8B 98 AB BB a a a a a

ADDB cs DB EB FB a a a a a

ADDD Cc3 D3 E3 F3 __a a a a

ANDA 84 94 A4 B4 _—_a a0
ANDB C4 D4 E4 F4 __a a0 __
ANDCC 1C *

ASLA 48 u aaaa

ASLB 58 uaaaa

ASL 08 68 78 uaaaa

ASRA 47 u a a

ASRB 57 a a

ASR 07 67 77 a a _a
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BITA
BITB

CLRA
CLRB
CLR

CMPA
CMPB
CMPD
CMPS
CMPU
CMPX
CMPY

COMA
comB
comMm

CWAI

DAA
DECA
DECB
DEC

EORA
EORB
EXG
INCA
INCB
INC
JMP
JSR

LDA

85
C5

81

1083
118C
1183

108C

3C

88
1E

86

95
D5

OF

91

1093
119C
1193

109C

03

0A

98
D8

oc

OE

9D

96

A5
ES

6F

A1l

10A3
11AC
11A3

10AC

63

6A

A8
E8

6C
6E
AD

A6

B5
F5

7F

B1

1083
11BC
1183

10BC

73

7A

B8
F8

7C
7E
BD

B6

203

43
53

19
4A
5A

4C
5C

Appendix |

- aa
coco
coo

[ RO
SR
[ R
[ S

I
o
o

|

o

o
coco

oo O
|
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LDB
LDD
LDS
LDU
LDX
LDY

LEAS
LEAU
LEAX
LEAY

LSLA
LSLB
LSL

LSRA
LSRB
LSR

MuUL
NEGA
NGB
NEG
NOP
ORA
ORB
ORCC

PSHS
PSHU

PULS
PULU

ROLA
ROLB

8A
1A

34
36

35
37

D6
DC
10DE

9E
109E

08

04

00

9A
DA

E6

10EE
EE
AE
10AE

68

64

60

AA
EA

F6
FC
10FE
FE
BE
10BE

78

74

70

BA
FA
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48
58

44
54

3D

49
59

SO V)
(SRR R )
ococococoo



ROL
RORA
RORB

ROR
RTI
RTS

SBCA
SBCB

SEX

STA
STB
STD
STS
STU
STX
STY

SUBA
SUBB
SUBD

swi
Swi2
Swi3
SYNC
TFR
TSTA

TSTB
TST

82
Cc2

80
83

09

06

92
D2

oD

69

66

A2
E2

A7
E7
ED
10EF

AF
10AF

A0

EO
A3

6D

79

76

B2
F2

B7

FD
10FF

BF
10BF

BO
FO
B3

7D
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46
56

3B

39

3F
103F
113F

13

4D
5D
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Key to Condition Codes
__ not affected

a affected - test and set if true, clear otherwise

u value of half carry flag is undefined

s special case - carry set if b7 is set

* condition codes set as a direct result of the instruction

Branch Instructions

Form Rel Long Rel

BCC 24 LBCC 1024
BCS 25 LBCS 1025
BEQ 27 LBEQ 1027
BGE 2C LBGE 102C
BGT 2E LBGT 102E
BHI 22 LBHI 1022
BHS 24 LBHS 1024
BLE 2F LBLE 102F
BLO 25 LBLO 1025
BLS 23 LBLS 1023
BLT 2D LBLT 102D
BMI 2B LBMI 1028
BNE 26 LBNE 1026
BPL 2A LBPL 102A
BRA 20 LBRA 16

BRN 21 LBRN 1021
BSR 8D LBSR 17

BVC 28 LBVC 1028
BVS 29 LBVS 1029
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Indexed Addressing Modes

Type

Constant Off-
set

Accumulator Offet

Auto Increment/
Auto Decrement

PC Relative

Type

Constant Offset

Non-indirect

Forms

Zero offset
5-bit offset
8-bia offset
16-bit offset

A register offset
B register offset
D register offset

Increment by 1
Increment by 2
Decrement by 1
Decrement by 2

8-bit offset
16-bit offset

Indirect

Forms

Zero offest
5-bit offset

8-bit offset
16-bit offset

207

Assembler
Form

R

n,R
n,R
n,R

Assembler
Form

{.R)
defaults to
8-bit
(n,R)
{n,R)

Post Byte
OP Code

1RR00100
ORRnnnnn
1RR01000
TRR01001

1RR00110
TRR00101
1TRR0O1011

TRR00000
1RR00001
1RR00010
TRR00011

1XX01100
1XX01101

Post Byte
OP Code

1TRR10100

1RR11000
TRR11001
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Accumulator Offet

Auto Increment/
Auto Decrement

PC Relatiue

Extended
Indirect

Key

R = register
code
X=don't
care

Register Code X=00Y=01 U=10 S=11

A register offset
B register offset
D register offset

Increment by 1
Increment by 2
Decrement by 1
Decrement by 2
8-bit offset
16-bit offset

16-bit address
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(A,R)
(B,R)
(D,R)

not allowed
(,R++)
not allowed
(,--R)
(n,PCR)
(n,PCR)

(n)

1RR10110
1RR10101
1RR11011

1RR10001
1RR10011
1XX11100
1XX11101

10011111



Appendix 1l

Two Commercial Assemblers

DASM

The DASM assembler from Compusense has a number of features that
make it particularly suitable for the beginning assembly language
programmer. Available as a program cartridge it will assemble lines of 6809
assembly language embedded in a Dragon BASIC program. The machine
code so produced can be stored anywherein memory butitis usual for DASM
to store it just above the memory used by BASIC (as with the BASIC
assembler). Since the text of the assembly language program is entered
exactly as if it formed part of a BASIC program, editing the text s carried out,
by the familiar but limited, EDIT command. DASM supports all of the 6809’s
features including indirect addressing, Program Counter relative etc. It also
supports full address expressions, a range of constant types and the usual
pseudo ops. All labels in DASM must start with @ and so it is possible to
assembly and run any of the programs in this book without modification.

If you want to use a machine code monitor program to debug your
programs assembled with DASM, then Compusense have produced a simple
monitor called DEMON, available as a separate cartridge or together with
DASM on asingle cartridge. This is a fairly limited but easy-to-use debugging
aid. It includes a memory dump, aregister examine facility and break points
but not a disassembler.

In conclusion, DASM is easy to use an especially suited for situations in
which a little assembly language has to be mixed with BASIC.

DREAM

Dragon Data’s own assembler is well described by its name. For the
serious assembly language programmer it is indeed a dream come true! The
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only problem is that it takes over the entire machine and substitutes its own
editor in place of BASICs crude but familiar editing commands. If you are
prepared to learn to use the DREAM editor then you will very quickly find it so
useful that you will be using it for other editing tasks! DREAM is available
either as a cassette or a cartridge and there is also a cartridge version called
ALLDREAM. This last package is by far the best investment if you are
planning to do much assembly language programming as it frees the largest
amount of RAM for use and also includes gives direct acess to the
DREAMBUG monitor program. This monitor is very sophisticated and as well
as the standard features such as memory and register examine, break points
etc it also contains a trace facility and a disassembler.

The DREAM assembler supports all the 6809's instructions and addressing
modes. It also supports the full range of address expressions and constants. It
also uses the most economical representation for constant offset indexed
mode even if this means making more than two passes through the program.
Only one label in any program to be assembled by DREAM can start with @
which is used as an optional marker for the start of the program. In other
words, to use DREAM to assemble the programs in this book REMOVE THE
@ SYMBOL FROM EVERY LABEL. Apart from this slight change you should
have no trouble using the DREAM assembler.

In conclusion, the DREAM assembler and the DREAMBUG monitor form

an ideal pair for anyone planning to do assembly language programming ona
regular basis.
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Complete Listing of Assembler

-

REMBASICASSEMBLERV10.1

a

CLEAR2000,&H6FFF

10 DATALDA,&H86,&H96,&HAB,&HB6,-1
11 DATALDB,&HC6,&HD6,&HES6,&HF6,-1
12 DATASTA,-1,&H97,&HA7,&HB7,-1

13 DATASTB,-1,&HD7,&HE7,&HF7 -1

14 DATAADDA &H8B,&H9B,&HAB,&HBB -1
15 DATAADDB,&HCB,&HDB,&HEB,&HFB,-1
16 DATARTS,-1,-1,-1,-1,&H39

17 DATAJMP,-1,&HOE,&H6E,&H7E,-1

18 DATAJSR,-1,&H9D,&HAD,&HBD,-1

19 DATAANDA, &H84,&6H94,6HA4,&HBB -1
20 DATAANDB,&HC4,&HD4,&HE4,&HF4,-1
21 DATAORA, &H8A &HIA,&HAA &HBA, -1
22 DATAORB,&HCA,&HDA,&HEA,&HFA,-1
23 DATAEORA, &H88,&H98,&HA8,&HBS,-1
24 DATAEORB,&HC8,&HD8,&HES,&HF8,-1
25 DATACOMA,-1,-1,-1,-1,&H43

26 DATACOMB,-1,-1,-1,-1,&H53

27 DATACOM,-1,&H03,&H63,&H73,-1

28 DATALSLA,-1,-1,-1,-1,8H48

29 DATALSLB,-1,-1,-1,-1,&H58

30 DATALSL,-1,&H08,&H68,&H78,-1

31 DATALSRA,-1,-1,-1,-1,&H44

32 DATALSRB,-1,-1,-1,-1,&H54
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33 DATALSR,-1,&H04,&H64,&H74 -1

34 DATAROLA,-1,-1,-1,-1,&H49

35 DATAROLB,-1,-1,-1,-1,&H59

36 DATAROL,-1,&H09,&H69,&H79,-1

37 DATARORA,-1,-1,-1,-1,&H46

38 DATARORB,-1,-1,-1,-1,&H56

39 DATAROR,-1,&H06,&H66,&H76,-1

40 DATAADDD,&HC3,&HD3,&HE3,&HF3,-1
41 DATASUBA,&H80,&H90,&HAQ, &HBO,-1
42 DATASUBB,&HCO0,&HDO,&HEO,&HFO0,-1
43 DATASUBD,&H83,&H93,&HA3,&HB3,-1
44 DATACLRA,-1,-1,-1,-1,&H4F

45 DATACLRB,-1,-1,-1,-1,&H5F

46 DATACLR,-1,&HOF,&H6F,&H7F,-1

47 DATAINCA,-1,-1,-1,-1,&H4C

48 DATAINCB,-1,-1,-1,-1,&H5C

49 DATAINC,-1,&HO0C,&H6C,&H7C,-1

50 DATADECA,-1,-1,-1,-1,&H4A

651 DATADECB,-1,-1,-1,-1,&H5A

652 DATADEC,-1,&HOA,&H6A &H7A, -1

63 DATANEGA,-1,-1,-1,-1,&H40

64 DATANEGB,-1,-1,-1,-1,&H50

65 DATANEG,-1,&H00,&H60,&H70,-1

656 DATASTD,-1,&HDD,&HED,&HFD,-1

57 DATALDD,&HCC,&HDC,&HEC,&HFC,-1
658 DATASEX,-1,-1,-1,-1,&H1D

59 DATAASRA,-1,-1,-1,-1,&H47

60 DATAASRB,-1,-1,-1,-1,&H57

61 DATAASR,-1,&H07,&H67,&H77,-1

62 DATAASLA,-1,-1,-1,-1,&6H48

63 DATAASLB,-1,-1,-1,-1,&H58

64 DATAASL,-1,&H08,&H68,&H78,-1

65 DATAMUL,-1,-1,-1,-1,&H3D

66 DATADAA,-1,-1,-1,-1,&H19

67 DATACMPA &H81,&H91,&HA1,&HB1,-1
68 DATACMPB,&HC1,&HD1,&HE1, &HF1,-1
69 DATACMPD,&H1083,&H1093,&H10A3,&H10B3,-1
70 DATABITA,&H85,&H95,&HASG,&HBS,-1
71 DATABITB,&HC5,&HDS5,&HES, &HFS5,-1
72 DATAANDCC,&H1C,-1,-1,-1,-1

73 DATAORCC,&H1A,-1,-1,-1,-1
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106
107
108
109
199

400
401
402

Appendix Il

DATATSTA,-1,-1,-1,-1,&H4D
DATATSTB,-1,-1,-1,-1,&HSD

DATATST, -1,&HOD,&H6D,&H7D,-1
DATAADCA &H89 &H99,&HAS,&HB9, -1
DATAADCB,&HCS,&HD9, &HHES, &HFS, -1
DATASBCA, &H82,6rH92,&HA2, &rHB2, -1
DATASBCB,&HC2,&HD2,&HE2,&HF2, -1
DATALDX,&HS8E,&HIE, &HHAE, &HBE, -1
DATALDY, &H108E,&H109E,&H10AE,&H10BE, -1
DATALDS, &H10CE,&H10DE, & H10EE, & H10FE, -1
DATALDU,&HCE, &HDE, &HEE, & HFE, -1
DATASTS,-1,&H10DF, & H10EF, & H 10FF, -1
DATASTU,-1,&HDF,&HEF, &HFF -1
DATASTX,-1,&H9F, &HAF, &HBF, -1
DATASTY,-1,&H109F, & H10AF, & H10BF, -1
DATACMPS,&H118C,&H119C,&H11AC,&H11BC,-1
DATACMPU,&H1183,&6H1193,&H11A3,&H11B3,-1
DATACMPX,&H8C,&H9C,&HAC,&HBC, -1
DATACMPY,&H108C,&H109C,&H10AC,&H10BC,-1
DATALEAS,-1,-1,&H32,-1,-1
ATALEAU,-1,-1,&H33,-1,-1
DATALEAX,-1,-1,&H30, -1,-1
DATALEAY,-1,-1,&H31,-1,-1
DATAABX,-1,-1,-1,-1,&H3A
DATAEXG,&H1E,-1,-1,-1,-1
DATATER,&HIF,-1,-1,-1,-1
DATAPULS,&H35,-1,-1,-1,-1
DATAPULU,&H37,-1,-1,-1,-1
DATAPSHS,&H34,-1,-1,-1,-1
DATAPSHU,&H36,-1,-1,-1,-1
DATARTI,-1,-1,-1,-1,&H3B
DATACWAIT,&H3C,-1,-1,-1,-1
DATASYNC,-1,-1,-1,-1,&H13
DATASWI, -1,-1,-1,-1,&H3F
DATASWI2,-1,-1,-1,-1,&H103F
DATASWI3,-1,-1,-1,-1,&H113F
DATAZ2Z,-1,-1,-1,-1,-1

-1
1,
1,
1

DATABRA, &H20,&8H16
DATABCC,&H24,&H1024
DATABCS,&H25,&H1025
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403 DATABEQ,&H27,&H1027
404 DATABGE,&H2C,&H102C
405 DATABGT,&H2E,&H102E
406 DATABHI,&H22,6H1022
407 DATABHS,&H24,&H1024
408 DATABLE,&H2F,&H102F
409 DATABLO,&H25,&H1025
410 DATABLS,&H23,&H1023
411 DATABLT,&H2D,&H102D
412 DATABMI,&H2B,&H102B
413 DATABNE,&H26,&H1026
414 DATABPL,&H2A,&H102A
415 DATABSR,&H8D,&H17
416 DATABVC,&H28,&H1028
417 DATABVS, &H29,&H1029
499 DATAZZZ,-1,-1

500 GOSUB1000

510 GOSUB2000

516 FORPASS=1T02

518 |=1:P=&H7000

6520 GOSUB3000

530 GOSUB4000

540 GOSUB5000

660 IFPS=0THENGOSUB6000
556 IFPS> 0THENGOSUB6500
560 |=1+1:PS=0

670 IFI< =TTHENGOTO0520
575 PRINT

580 NEXTPASS

590 1=T:GOSUB1980

600 LC=0:GOTO515

1000 DIMA$(150),C(5),T$(50),T(50)
1010 (=0

1020 P =&H7000

1030 LC=0

1040 RETURN
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1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120

2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

2400
2405
2410
2420

Appendix /Il

PRINT “PRESS ANY KEY TOCONTINUE”;
IFINKEY$ =""THENGOTO 1990

CLS

PRINT@66,"BASIC ASSEMBLER”
PRINT

PRINTTAB(10); “SELECT ONEOF”
PRINT

PRINTTAB(8); “INPUT/EDIT

PRINTTAB(8); “ASSEMBLE.. .2"
PRINTTABI(8); “SAVEONTAPE....3"
PRINTTAB(8); “LOAD FROMTAPE..4"
PRINTTAB(8); “"EXECPROGRAM....6"
INPUTACTION

IFACTION< 1 ORACTION>5THEN GOT0O2000
ONACTIONGOT02200,2800,2850,2920,2990

CLS

PRINT@76,“EDIT”

PRINT
PRINTTAB(10);"SELECTONEOF”
PRINT
PRINTTAB(8);"LISTPROGRAM....1"
PRINTTAB(8);”LISTTOPRINTER.2"
PRINTTAB(8);"ADDTOPROGRAM..3"
PRINTTAB(8);"DELETELINES....4"
INPUTED

IFED< 1 ORED>4THEN GOT02000
ONEDGOT02400,2400,2500,2700

CLS

IFI=0THEN GOTO1980

FORK=1TOI

IFED=1THEN PRINT K;":”; TAB(4);A$(K) ELSE

PRINT # 2,K;”:"; TAB(4);A$(K)

2430
2440

2500
2505
2510
2520

NEXTK
GOTO 1980

IFI=0THEN GOT02620

INPUT”ADD LINES FOLLOWING LINENUMBER";LN
IFLN> =1 THEN LN =1:GOT02620

INPUT “NUMBER OF LINES TO INSERT";IN
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2530 IFI+IN>150 THEN PRINT*TOOMANY“:GOT02000
2540 FORK=ITOLN+1STEP-1

2550 AS$(K+IN)=AS$(K)

2560 NEXTK

2570 FORK=LN+1TOLN+IN

2580 PRINTK;”:";TAB(4);

2590 LINEINPUTAS$(K)

2600 NEXTK

2605 I=1+IN

2610 GOTO1980

2620 PRINT”TYPEENDTOFINISH”

2630 K=1+1

2640 PRINTK;":";TAB(4);

2650 LINEINPUTLS$

2660 IFLEFT$(L$,3)="END” THENGOTO1980
2670 I=K:A$(l)=L$

2680 GOTO2630

2700 INPUT”FIRSTLINETODELETE”;FL
2710 INPUT”LASTLINETODELETE”;LL

2720 IFLL< FLTHENPRINT”"NOTDELETED”:GOTO1980
2730 FORK=LL+1TOI

2740 AS(FL+K-LL-1)= A$(K)

2750 NEXTK

2760 |=I-(LL-FL+1):PRINT”"DELETED"
2770 GOTO1980

2800 INPUT”SCREEN(0)ORPRINTER(1)”;PRT
2810 T=I

2820 PRT=PRT*2

2830 RETURN

2850 INPUT”FILENAME";F$

2860 PRINT”"PRESSPLAYANDRECORD”
2870 PRINT"PRESSANYKEYWHENREADY”
2880 IFINKEY$ =""THENGOT02880

2890 OPEN"O”, #-1,F$

2900 FORK=1TOI:PRINT#-1,A$(K):NEXTK
2910 CLOSE #-1:GOT01980
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2920 INPUT“FILENAME";F$

2930 PRINT“PRESSPLAY”

2940 OPEN"I”, #-1,F$

29501=0

2960 IFEOF(-1)THENCLOSE#-1:GOT01980
2970 I= 1+ 1:INPUT#-1,A$(1)

2980 GOT0O2960

2990 CLS:EXEC&H7000
2995 GOTO1980

3000 J=1

3010 IFMID${AS(1),j,1)=""THENJ=J+1:G0T03010
3020 M$=MID$(AS(I),J,1)

3030 J=J+1

3040 IF J< =LEN(AS(I) THEN IF MID$(A$(1),J, 1)< > " “ THEN
M$ = M$ + MID$(A3$(1),J,1):J=J + 1:GOTO3040

3050 J=J+1

3060 IFLEFT$(M$,1)="@"THENGOTO3500

3070 RETURN

3500 S$=M$

3510 GOSUB7000

3520 IFF>0ANDPASS = 1THENERR =2:GOT09000
3525 IFF>0ANDPASS =2THENGOTO03010

3530 LC=LC+1

3540 T$(LC)=M$

3550 T(LC)=P

3560 GOTO3010

4000 RESTORE

4001 IFM$ = “EQU"THENPS =1:RETURN

4002 IFM$ ="RMB”THENPS = 2:RETURN

4003 IFM$ ="FCB”THENPS =3:RETURN

4004 IFM$ ="FDB“THENPS =4:RETURN

4009 IF(LEFT$(M$,1)="B”ANDLEFT$(M$,3)<> “BIT”)OR
LEFT$(M$,2) = “LB"THENGOT04500
4010READC$

4015 FORK=1TO5:READC(K):NEXTK

4020 IFC$="2ZZ"THENI=1+1:ER=1:G0T0S000
4030 FC$=MSTHENRETURN

4040 GOTO4010
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4500 READC$

4510 FORK=1TO5:READC(K):NEXTK

4520 IFC$< > "2ZZ2"THENGOTO4500

4530 IF LEFT$(M$, 1) = “L” THEN M$=RIGHT$(M$,3): BR=2 ELSE
BR=14535TYPE=BR

4540 READC$

4550 FORK =1T0O2:READC(K}:NEXTK

4560 IFC$="2ZZ" THENI=1+1:ER=1:GOTO9000

4570 IFC$=M$THENRETURN

4580 GOTO4540

5000 IFM$="EXG”"ORMS$ ="TFR”THENGOSUB5100
5005 IF LEFT$(M$,3)="PUL"” OR LEFT$(M$,3) ="PSH” THEN
GOSUB5300ELSEGOSUB5500

5010 IFAF$=""THENTYPE=5:RETURN

5020 A=VAL(AFS$)

5024 IFBR>0THENGOTO05700

5025 IFTYPE=1THENRETURN

5030 IFTYPE=2THENRETURN

5035 IFTYPE=3THENRETURN

5040 TYPE=4

5050 RETURN

5100 FORK=JTOLEN(AS(!)

5110 IFMID${A$(1),K, 1) =", THENGOTO5130
5120 NEXTK

5130 L$=MID$(AS(1),K-2,2)

5140 GOSUB5200

5150 AF$=L$

5160 L$=MID$(AS(I),K+1,2)

5165 IFRIGHT$(L$,1)="" OR LEN(L$)=1 THEN L$="
"+ LEFT$(LS,1)

5170 GOSUB5200

5180 AF$="&H"+AF$+L$

5185 TYPE=1

190 RETURN

5200 IFL$="D"THENL$="0"
5210 IFL$="X"THENL$="1"
5220 IFL$="Y"THENL$="2"
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5230
5240
5250
5260
5270
5280
5290

5295
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450

5500
5510
5520
5521
6622
5250
5626

Appendix JIf

IFL$ ="U”"THENLS$ = 3"
IFL$="S"THENL$ = "4"
IFL$ ="PC"THENL$ = "5"
IFL$="A"THENL$ ="8"
IFL$ = "B”"THENL$="9"
IFL$="CC"THENLS$ ="A"
IFL$="DP”THENL$="B"

RETURN

A=0

FORK=JTOLEN(AS{I})
L$=MID$(As(1),K,2)

IFL$ ="PC"THENA=A +128:K=K+1
IFL$ ="DP"THENA=A +8:K=K +1
IFL$ ="CC*"THENA=A+1:K=K+1
L$ =MID$(AS{),K, 1)
IFL$="A"THENA=A+2
IFL$="B"THENA=A+4
IFL$="X"THENA=A+16
IFL$="Y"THENA =A +32
IFL$="S"ORL$ ="U"THENA=A + 64
NEXTK

AF$=STR$(A)

TYPE=1

RETURN

AF$=""

FORK = JTOLEN(A$())

L$=MID$(AS(1),K,1)

IFL$ = "> "THENAF$= "":TYPE=2:GOTO5540
IFL$ = #"THENT YPE = 1:AF$ = *":GOT05540
IFL$ = "$"THENL$ = "&rH"
IFL$=","THENGOTO5800

6630IFL$<> ““THENAF$ = AF$ + L$

5540
6550
5560
5670
5580
5590
5600

NEXTK

IF LEFT$(AF$,1)< > "@"THEN RETURN
S$=AF$

GOSUB7000

IFF=0ANDPASS = 2THENERR = 3:GOT09000

AF$ = STRS(T(F))
RETURN
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5700 IFPASS=1THENA=0:RETURN

5705 OF= A-BR-1-P

5710 IFBR=1 AND {OF<-128 OR OF>127) THEN
ER=4:1=1+1:GOT03%000

65720 IFOF> =0THENA=OF:RETURN

5730 IFBR=2THENGOT05760

5740 A=256+0F

5750 RETURN

5760 A=65536+ OF

5770 RETURN

5800 TYPE=3

65810 L$=MID$(A$(1),K-1,1)

65820 OF=0

65830 IFL$="A"THENOF=&H86

65840 IFL$="B"THENOF = &H85

658650 IFL$="D"THENOF=&H8B

5860 L$=MID$(AS(I),K+1,1)

5870 IFL$="-"THENL$ =MID$(A$(I),K+2,1):0F = &H82
5880 IFL$="-"THENL$ =MID$(A$(l),K+3,1):0F = &H83
5890 RF=0

6900 IFL$="Y"THENRF =1

5901 IFL$="U"THENRF=2

65902 IFL$="S"THENRF=3

5910 IFMID$(A$(1),K+2,1)="+"THENOF=&H80
5920 IFMID$(A$(1),K+2,2)="+ + "THENOF=&H81
5930 IFOF<>0THENAF$=STR$(RF + OF):RETURN
5950 OF=&H89 +RF

65955 AF$=""+AF$

5960 A=VAL(AFS$)

6970 IA=1

65980 IFA> =0THENRETURN

5990 AF$=STR$(65536 +A)

5995 RETURN

6000 IFC(TYPE)=-1THENERR =5:G0OT09000

6010 IFPASS =1THENGOT06200

6020 PRINT #-PRT,RIGHT$(”” + HEX$(P),4); TAB(5);
6030 PRINT $-PRT,HEX$(C(TYPE)); TABI(8);

6035 IFIA=1THENPRINT §-PRT,HEX${OF);
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6040 IFTYPE< >5THENPRINT#-PRT,HEX$(A);

6050 PRINT#-PRT, TAB(15);A%(1)

6200 IFC(TYPE)< 256 THENPOKEP,C(TYPE)

6210 IF C(TYPE)>255 THEN POKE P,INT(C(TYPE}/256): POKE
P+ 1,C(TYPE)-INT({C(TYPE)/256)*256:P=P +1

6220 P=P+1

6230 IFBR=2THENTYPE=4

6240 IFTYPE=1ANDRIGHT$(M$,1)="D"THENTYPE=4
6241 IFTYPE=1ANDRIGHT$(M$,1) ="X"THENTYPE=4
6242 IFTYPE=TANDRIGHT$(M$,1)="Y"THENTYPE=4
6243 IFTYPE=1ANDRIGHT$(M$,1)="U"THENTYPE=4
6244 IFTYPE=1ANDRIGHT$(M$,1)="S"THENTYPE=4
6250 IFTYPE=5THENTYPE=0:RETURN

6255 IFIA=1THENPOKEP,OF:P= P+ 1:TYPE=4

6260 IFTYPE=20RTYPE=10RTYPE=3THENPOKEP,A
6270 IF TYPE=4 THEN POKE P,INT(A/256):P= P+ 1: POKE
P,A-INT(A/256)*256

6280 TYPE=0

6290 BR=0

6300 P=P+1

6305 IA=0

6310 RETURN

6500 IFPS<>1THENGOTO6540

6510 IFPASS =1THENT(LC)=A

6520 IFPASS=2THENPRINT #-PRT,TAB(15);A$(l)
6530 RETURN

6540 IFPS<>2THENGOTO06570

6545 IFPASS =2THENPRINT #-PRT,HEX$(P);
6550 P=P+A

6560 IFPASS =2THENGOT06520

6570 IFPS<>3THENGOTO6650

6580 A= A-INT(A/256)*256

6590 IFPASS =1THENGOT06620

6600 PRINT #-PRT,HEX$(P); TAB(5);HEX$(A);
6610 PRINT #-PRT,TAB(15);A$(1)

6620 POKEP,A

6630 P=P+1

6640 RETURN

6650 IFPS<>4THENRETURN

6660 IFPASS =1THENGOTO06710
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6670
6680
6690
6700
6705
6710
6720

7000
7010

LB=A-INT(A/256}*256

HB =INT(A/256)

PRINT#-PRT,HEX$(P); TAB(5);HEX$(HB); TAB(8);HEX$(LB);
PRINT #-PRT,TAB(15);A${l)

POKEP,HB:POKEP +1,LB

P=P+2

RETURN

K=1
IFK> LCTHENF=0:RETURN

7020 IFT$(K)=S$THENF=K:RETURN

7030
7040

9000
9010

K=K+1
GOTO7010

PRINT #-PRT,”"ERROR--";ER;"****INLINE";I-1
RETURN
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Address
JSR $8015
JSR $8018
JSR ($A008)

JSR $8021
JSR ($A006)

JSR $8006

JSR $8012

JSR $800C

JSR $800F

Appendix IV

ROM Subroutines

Description
Turn on cassette relay
Turn off cassette relay

Write block of data to cassette - $7C = Block type 0 is
fileheader

1isdata

FF is end of file

$7D = Number of bytes to bz written $7E/F =
Address of start of data to be written

Prepares cassette for data input

Reads in data from cassette (used following JSR
$8021)-

$7E/F = Addressoflocationwheredatawillbestored
$81 Errorcode, clearif noerror

Reads keyboard, returns ASCII code of key pressed in
Aregister. If nokeyis pressed A =0

Updates the four joystick reading stored in $15A to
$15D

Writes the character whose ASCII code isin the A
registertothescreen-

&88/89 contain the address of the next screen location
the $800C willuse

As for $800C but character is sent to printer
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Chapter Two

1)
address  data

28672 146 LDA 200
28673 200

28674 153 ADDA201
28675 201

2) After running the program, memory location 200 still contains 56 and
memory location 201 still contains 4. The result of the addition, that is 60, is
stored in the A register.

Chapter Three

1) Each pair of hex characters takes single memory location so it takes 4
memory locations to store $F3095E6F.

2)
a) $0100 = 0000 0001 0000 0000
b) $1000 = 0001 0000 0000 0000
c) $7FFF = 0111 111 111 1mn
d) $7FFF = 1111 1 1M 1n

$FFFF is the highest address that you can use on the Dragon and $7FFF is the
highest address occupied by RAM.
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3a) Trying to store something using immediate addressing doesn’t make any

sense.

b) $7FFF is too large to be loaded into the A register as the result of

immediate addressing.

4)

7000
7002
7005
7008

86
BB
B7
39

10
7FFF
TFFF

The program adds $ 10 to the contents of memory location $7FFF and then
stores the result back in $7FFF.

Chapter Four

1)

585 GOSUB 6900

6900 PRINT

6910 FORK=1TOLC

6920 PRINT T$(K),”=";T(k)
6930 NEXT K
6940 RETURN

2)

@INPUT
@PRINT
@LOOoP

EQU
EQU
JSR
JSR
JMP

Chapter Five

1)

LDA
ORA
ANDA
STA

$8006
$800C
@INPUT
@INPUT
@LOOoP

@DATA
4480
#$F1
@DATA
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2)

@LOOP  COM @FLIPPER
JMP @LooP

3)

LSLA
ROLB
LSLA
ROLB
LSLA
ROLB
LSLA
ROLB

This program is based on the fact that LS LA followed by ROLB will move b7 in
the A register into b1 in the B register using the C bit as a temporary store.

4)

@START LDA @DATA1
ANDA @DATA2
STA @DATA3
RTS

@DATA1 FCB 23

@DATA2 FCB a4

@DATA3 FCB 0

Notice that the values following the FCB’s constitute whatever data you
actually wanted to AND together.

Chapter Six

LDA @DATA1
ADDA @DATA2
STA @ANS
RTS

This program would be capable of adding together 200 and 50 giving the
answer 250 in memory location @ANS.
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2) No modifications would be necessary. A two’s complement addition
program is different only in that you have to interpret the bit patterns that
represent the number differently. The program would be capable of adding
105 and — 15 leaving the answer 90 in memory location @ANS.

3)
LDA @NUM
ASLA
ASLA
ASLA
ADDA @NUM
STA @ANS

This program willmultiply the two’s complement number in @NUM by nine
by first performing three arithmetic shift lefts and then adding the original
number to the result. As eachshiftleft is equivalent to multiplication by 2, the
final result stored in @ANS is 8 times the contents of @NUM plus the
contents of @NUM or, in other words, 9 times the contents of @NUM as
required.

4)
LDB @LITTLE
SEX
SUBD @BIG

The eight-bit value is loaded into the B register and then sign extended into
the A register to give a correct two’s complement 16 -bit number in the D
register. The SUBD instruction is then used to subtract the 16-bit value giving
the result, which is also 16 bits, and so takes two memory locations to store.

Chapter Seven

1)
@ORCC 04
ANDCC $FE
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2)

LDB 10
@LOOP ..

instructions within the loop
CMPB 1
BGE @Loor

3)
LDA @DATA1
ADDA @DATA2
BCS @ERJMP
JSR @RESULT

Following a simple binary addition the carry bit is set if the result is out of
range.

4) The only change that is necessary is to change the BCS @ERJMP to BVS
@ERJMP. For two’s complement addition the V bit is set following an
overflow.

Chapter Nine

0

@DELAY LDX @TIME
@DLOOP LEAX -1
BNE @DLOOP
RTS
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2)

10 CLEAR 1000,&H6FFF

20 POKE &H7EFF,255

30 FORI=1TO 255

40 POKE &H7F00 +1-1,RND(64) -1
50 NEXTI

60 POKE &H7EFE,RND(255)

70 POKE &H7EFD,RND{255)

80 EXEC &H7000

90 STOP

where all of the values of the sound generator program are set randomly.
Chapter Ten
1)

@DELAY  SYNC
RTS
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A

ABX

Accumulator
Accumulator Offset
ADC

ADDA, ADDB
ADDD

Address
Addressing
Addressing mode
Addressing register
(see pointer register)
ANDA, ANDB
ANDCC

Apple

Aregister
Arithmetic

ASR, ASRA, ASKB
‘Auto’ indexing

BASIC
BCC
BCS
BEQ
BGE
BGT

Index

157

162
125

74
21

22

53
101

71
85
154

104
104
103
105
105

BHI
BHS

Binary codeddecimal

BITA, BITB
Bitmanipulation
Bitwise operations
BLE

BLS

BLT

BLU

BMI

BNE

BPL

BRA
BranchInstructions
Bregister

BSR

BVC

BVS

Byte

[

Carrybit

CLR, CLRA, CLRB
CMmP

CMPS

CMPU
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CMPX

CMPY

COM, COMA, COMB
Complement, see COM
Conditional branch
Condition code
Constant offsetindexing
CWAI

D

DAA

DEC, DECA, DECB
Delayloop
Directaddressing
DP (Direct Page)
DRegister

E

Editor

E (Entire) bit

Effective address
EORA,EORB

EQU

Exclusive - or, see EOR
EXG

Extended addressing
Extended precision

F

FAC

F bit

FCB

FDB

FIRQ

Floating point
Floating point binary
Forward jump

G
GOTO

148
148
56
98

149
186

87
136

22,163
147,163
74

117
184
156

49

150

H
Hexadecimal
HEX$

H (half)bit

|

| bit
Immediateaddressing
INC, INCA, INCS
Indexed addressing
Indexregister
Indirection

IRQ

Interrupt

Interrupt handler

J
JMP
JSR

L

Label

LBA

LBPL

LBSR

LDA

LDB

LDD

LDS

LDU

LDX

LDY

LEA, LEAX, LEAU, LEAY
LIFO

Load

Logical operations
LSL, LSLA, LSLB
LSR,LSRA,LSRB
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184
34
78

146

148

158

181

177
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m

Machinecode
Mask

Mnemonic
Multipleprecision
Multiplication

N

NEG, NEGA, NEGB
NMI

N (negative) bit

o]

ORA, ORB
ORCC
Overflow
Overflow bit

[

Pagethree

Pagetwo

Pointer register
Positionindependent code
Postbyte

Program Counter (PC)
Programcounterrelative
Pseudo operation

PSH

PSHS

PSHU

PUL

PULS

PULU

R

RAM

Register

Relative addressing
RMB

ROL, ROLA, ROLB 64
3 RT 182
60 RTS 47
4
125 S
83 SEX 82
SBC 125
Shiftinstructions 61

76 Signedconditional branches 106
185 Simple indexing
g9 (seeconstant offset)

Softwarelnterrupt 186
Sound 168
Sregister 178
54 sTA 10
101 Stack 177
76 sTB 10
100 sTD 82
Store 10
STS 148
109 STU 148
109 STX 148
147 STY 148
94 SUBA, SUBB, SUBD 74
162 Subroutines 47,181
14 SWI, SWI2, SWI3 186
157 SYNC 186
48 System stack 178
177

178 T
179 TFR 150
177 Truthtable 53
179 TST,TSTA,TSTB 111
179  Two-pass assembly 44
Two’s complement 72

g U
7  Unconditional branching 92
92 Unsignedconditional branches 106
66 Uregister 178
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Userstack
USR

\Y
V {oVerflow) bit

w
White noise

178
197

100

173

X
Xregister

Y
Y register

z
Z {zero) bit

Index

147

147

99
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The language of the Dragon computer is BASIC to many people but, to write high
speed programs and to get the stunning visual effects that you see in arcade style
games, you need to go further and program in Assembler.

To many people, assembler language is a black art, not intended for the average
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fully professional programs.
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